

Preparatory Studies for Eco-design Requirements of Energy-using Products

Lot 24: Professional Washing Machines, Dryers and Dishwashers

Tender No. TREN/D3/91-2007

Final Report, Part: Dishwasher Task 5: Definition of Base Case

Öko-Institut e.V. Institute for Applied Ecology, Germany Ina Rüdenauer Markus Blepp Eva Brommer Carl-Otto Gensch Kathrin Graulich

BIO Intelligence Service, France Shailendra Mudgal Raul Cervantes Thibault Faninger Lorcan Lyons

Büro Ö-Quadrat, Germany Dieter Seifried February 2011

Öko-Institut e.V.

Freiburg Head Office P.O. Box 17 71 79017 Freiburg, Germany Street Address Merzhauser Str. 173 79100 Freiburg, Germany Tel. +49 (0) 761 – 4 52 95-0 Fax +49 (0) 761 – 4 52 95-88

Darmstadt Office Rheinstr. 95 64295 Darmstadt, Germany Tel. +49 (0) 6151 – 81 91-0 Fax +49 (0) 6151 – 81 91-33

Berlin Office Schicklerstr. 10 10179 Berlin, Germany Tel. +49 (0) 30 – 40 50 85-0 Fax +49 (0) 30 – 40 50 85-388 For reasons of better readability, two Task 5 reports were prepared.

The report at hand covers *professional dishwashers*.

The Task 5 report on *professional washing machines and dryers* is published separately.

Part: Professional Dishwashers

Table of Contents – Task 5: Definition of Base Case

List of ta	bles	V
List of fig	gures	VI
1	Introduction	1
1.1	Objective of Task 5	1
2	Product-specific inputs	2
2.2	Inputs in the production phase	4
2.3	Inputs in the distribution phase	7
2.4	Inputs in the use phase	8
2.4.1	Electricity consumption	8
2.4.2	Water consumption	9
2.4.3	Detergent and rinse aid consumption	9
2.4.4	Travelling effort for maintenance and repair over the product life	9
2.5	Inputs in the end-of-life phase	10
2.6	Economic inputs	11
3	Base case environmental impact assessment	13
3.1	Base case 1: Undercounter water-change	14
3.2	Base case 2: Undercounter one-tank	17
3.3	Base case 3: Hood-type	20
3.4	Base case 4: Utensil/pot	23
3.5	Base case 5: Conveyor-type one-tank	26
3.6	Base case 6: Conveyor-type multi-tank	29
3.7	Conclusions	32
4	Base case life cycle costs	33
5	EU Totals	35
5.1	Market data	35
5.2	Life Cycle Environmental Impacts	35
5.3	Life Cycle Costs	39

6	EU-27 total system impact	41
7	Conclusions	42
8	Annex	43
8.1	Detailed bills of materials of the six base cases	43
8.2	Stakeholder feedback to draft versions of Task 5	49

List of tables

Table 1	Description of the base cases	3
Table 2	Composition of the six base cases, by category of materials (packaging included)	5
Table 3	Life cycle impact assessment of missing individual components (part 1), for 1 kg	6
Table 4	Life cycle impact assessment of missing individual components (part 2), for 1 kg	7
Table 5	Volume of packaged product for base cases	7
Table 6	Electricity consumption per year for all base cases	8
Table 7	Water consumption per year for all base cases	9
Table 8	Detergent consumption per year for all base cases	9
Table 9	Travelling effort for maintenance and repair over the product life, by base case	10
Table 10	EcoReport economic inputs of the base cases	11
Table 11	Energy, water and consumables rates, by base case	12
Table 12	Overall improvement ratios for all base cases	12
Table 13	Life Cycle Impact (per unit) of base case 1 – Undercounter water- change	14
Table 14	Life Cycle Impact (per unit) of base case 2 – Undercounter one-tank	17
Table 15	Life Cycle Impact (per unit) of base case 3 – Hood-type	20
Table 16	Life Cycle Impact (per unit) of base case 4 – Utensil/pot	23
Table 17	Life Cycle Impact (per unit) of base case 5 – Conveyor-type one-tank	26
Table 18	Life Cycle Impact (per unit) of base case 6 – Conveyor-type multi- tank	29
Table 19	EcoReport outcomes of the LCC calculations of the six base cases	33
Table 20	Market and technical data for all base cases in 2009	35
Table 21	Environmental impacts of the EU-27 stock in 2009 for all base cases	36
Table 22	Energy consumption of professional dishwashers in the USA, 2008	38
Table 23	Total Annual Consumer expenditure in EU-27 in 2009	40

ビ Öko-Institut e.V.

List of figures

Figure 1	Simplified material flow diagram for life cycle analysis	1
Figure 2	Distribution of environmental impacts of BC 1 per life cycle phase	16
Figure 3	Distribution of environmental impacts of BC 2 per life cycle phase	19
Figure 4	Distribution of environmental impacts of BC 3 per life cycle phase	22
Figure 5	Distribution of environmental impacts of BC 4 per life cycle phase	25
Figure 6	Distribution of environmental impacts of BC 5 per life cycle phase	28
Figure 7	Distribution of environmental impacts of BC 6 per life cycle phase	31
Figure 8	Breakdown of base cases' LCC	34
Figure 9	Base cases' share of the environmental impacts of the stock in 2009	37
Figure 10	Base cases' share of the electricity consumption of the stock in 2009	38
Figure 11	Professional Dishwashers Primary Energy Consumption by Washer	
	Type, in the USA, 2008	39
Figure 12	Base cases' share of the total consumer expenditure in 2009	40

1 Introduction

1.1 Objective of Task 5

For this assessment, one or two average European Union (EU) product(s) have to be defined or a representative product category as the "base case" (BC) for the whole of the EU has to be chosen. On this base case most of the environmental and Life Cycle Cost (LCC) analyses will be built throughout the rest of the study. The base case is a conscious abstraction of reality, necessary one for practical reasons (budget, time). Having said that, the question if this abstraction leads to inadmissible conclusions for certain market segments will be addressed in the impact and sensitivity analysis.

In principle, the aim of a base case assessment is to quantify the environmental impacts of a service or product throughout its life. This includes the extraction of the materials contained within its components, to the disposal of these materials at the end-of-life. The method used to develop these impacts is life cycle analysis (LCA).

First, all incoming and outgoing flows of materials and energy are detailed for each step of the life cycle (manufacturing and design, transport, use, end-of-life). Figure 1 shows an example of how materials and energy flows are summarised for a simplified life cycle analysis.

Figure 1 Simplified material flow diagram for life cycle analysis

These material and energy flows are then aggregated over the life time of the product to compute total environmental impacts. These environmental impacts can be expressed in

many different ways, but are expressed in this study with 17 environmental indicators that were predefined for all Ecodesign studies. These indicators will be described in more detail later in the report. As the results are presented through several indicators of environmental impact, the LCA is a multi-criteria approach.

The benefit of the LCA approach is that one can understand all the resources consumed, as well as all the environmental side effects caused by a product. The drawback of this approach is that each product on a market has a different life cycle and it can be difficult to determine the net environmental impact of an entire market or of a range of product groups. To help overcome this problem, BCs are created to represent a theoretical approximation of the 'average' products on the EU market and use these to extrapolate the environmental impacts of the entire market of professional dishwashers.

While this study has been completed as comprehensively and accurately as possible, it relies on data which has been extrapolated from literature and stakeholder input. The performance of real appliances can vary substantially from the data provided in this report. This is understood and mitigated to an extent as much as possible while manipulating and calculating the data during the analysis, however rough approximations are ultimately unavoidable. When assumptions are made, it is also important to assess and check their influence on the final results. Thus, some parameters might have negligible impacts on the overall results so that assumptions can be easily accepted. If that is not the case, the sensitivity analysis in Task 8 will ensure the consistency of the results by studying the influence of the most important parameters. The results of the study are consequently estimated valuable as they represent the best indication to date of the environmental impacts of professional dishwashers in the EU.

The description of the BCs is the synthesis of the results of Tasks 1 to 4. Most of the environmental and life cycle cost analyses are built on these BCs throughout the rest of the study and it serves as the point-of-reference for Task 6 (technical analysis of BAT), Task 7 (improvement potential), and Task 8 (policy, impact and sensitivity analysis).

2 Product-specific inputs

This section describes the technical analysis of typical professional dishwashers which exist on the EU market. This data will cover the production phase, the distribution phase, the use phase and the end-of-life phase. Bill of materials (BOM) and resource consumption during product life are some of the important parameters to be looked at¹. This will be used as the general input for the base case environmental impact assessment, in section 3.

¹ Necessary input into the EcoReport tool.

Definition of base cases

The objective of this subsection is to define and describe the base cases, based on the previous tasks and the information recovered from stakeholders and literature review. The base cases are "a conscious abstraction of reality" and have to cover the wide variety of existing professional dishwashers in order to be as representative of the EU market as possible. Thus, BCs are not necessarily representative of real products. When two products have similar bill of materials and technical parameters, they may be represented by a single BC. The number of base cases is optimized to be small enough to enable a simplified analysis of the market but large enough to deal with the technological spectrum of professional dishwashers.

Although the MEEuP methodology foresees one or two BCs to cover the entire EU market for the products considered in each preparatory study, in this study six BCs emerged for the dishwasher part only. Such a high number of BCs is necessary to appropriately cover the broad range of technical specifications and functionalities of professional dishwashers. Table 1 gives an overview of the six defined base cases which are products that have already been presented in previous tasks.

Discussions on glasswashers have been held during the interim and final stakeholder meetings². It appears that technical parameters of glasswashers and undercounter one-tank dishwashers are very similar: glasswashers can be considered as smaller capacity undercounter one-tank machines. The global economic and environmental outcomes of base case 2 should be similar to the potential results of a thorough and separate analysis of glasswashers (the absolute values would differ but the base case is supposed to be representative of an EU average).

	2000p		
Base case	Name	Short Description	Average capacity
BC 1	Undercounter water-change	 Manually loaded program automats, undercounter front loaders with water-change operation Used for dishes, glasses, cutlery, pots, pans, utensils (semi-commercial and commercial applications) 	200 dishes/hour
BC 2	Undercounter one-tank	 Manually loaded program automats, undercounter front loaders with one-tank Used for mainly plates, glasses, cups, cutlery; also includes specialized glasswashers (commercial applications) 	550 dishes/hour

Table 1

Description of the base cases

 ² 13th July 2010 in Brussels and 9th December 2010 in Paris cf. http://www.ecowet-commercial.org/meetings.php

Base case	Name	Short Description	Average capacity
BC 3	Hood-type	 Program automats, one-tank pass through dishwashers Used for mainly plates, glasses, cups, cutlery (commercial applications) 	860 dishes/hour
BC 4	Utensil/Pot Utensil/Pot Utensil/Pot Utensil/Pot Utensil/Pot Utensil/Pot Utensil/Pot Used for black cookware and large utensils (commercial applications)		0.42 m ² (rack area) 20 cycles per hour
BC 5	Conveyor- type one-tank	 Conveyor-type (basket transport system or belt conveyor) with one-tank Used for plates, glasses, cups, cutlery, trays (heavy commercial applications) 	1 750 dishes/hour
BC 6	Conveyor- type multi- tank	 Conveyor-type (basket transport system or belt conveyor) with four zones: one pre-wash zone (one-tank), one main wash zone (one-tank), one rinse zone and one drying zone (no tank). Used for mainly plates, glasses, cups, cutlery, trays (heavy commercial applications) 	3 600 dishes/hour

2.2 Inputs in the production phase

Production phase data related to typical EU professional dishwashers consists of the BOM and the sheet metal scrap generated during production. The BOMs have already been presented in Task 4. In Table 2, they are structured according to the different categories of materials (e.g. bulk plastics, ferrous materials)³ and packaging material is included.

³ The full composition can be found in Annex A.

Base		1 Bulk	2 Tech	3	4	5	6	7	
case	Unit	Plastics	Plastics	Ferro	Non-ferro	Coating	Electronics	Misc.	Total
BC 1	g	8 826	1 014	27 266	1 373	0	448	11 769	50 696
BCT	%	17.4	2.0	53.8	2.7	0.0	0.9	23.2	100.0
BC 2	g	8 075	1 500	54 510	5 850	0	500	8 750	79 185
BC 2	%	10.2	1.9	68.8	7.4	0.0	0.6	11.1	100.0
BC 3	g	9 465	1 800	98 590	7 700	0	600	17 000	135 155
BC 3	%	7.0	1.3	72.9	5.7	0.0	0.4	12.6	100.0
BC 4	g	16 000	4 000	172 000	12 400	0	2 100	19 500	226 000
BC 4	%	7.1	1.8	76.1	5.5	0.0	0.9	8.6	100.0
BC 5	g	99 080	6 140	670 210	108 995	0	9 800	79 000	973 225
BC 5	%	10.2	0.6	68.9	11.2	0.0	1.0	8.1	100.0
BC 6	g	110 090	18 660	1 042 440	103 700	0	15 400	174 710	1 465 000
BC 0	%	7.5	1.3	71.2	7.1	0.0	1.1	11.9	100.0

 Table 2
 Composition of the six base cases, by category of materials (packaging included)

We notice that all base cases except BC 1 have around 70% of ferrous materials in their BOMs. It is expected that the impacts of the production and manufacturing phases will be mainly due to this category of materials.

Because the EcoReport was initially designed as a simple and generic tool for Ecodesign preparatory studies, its database does not include some materials found in professional dishwashers. These are listed below:

- polybutylene terephthalate (PBT);
- ethylene propylene diene monomer (EPDM) rubber;
- polyoxymethylene (POM);
- chromium;
- cotton (used for acoustic attenuation);
- wood (included in packaging).

When possible, the materials not present in the database have been re-allocated to the most similar materials available:

- EPDM rubber was considered as low density polyethylene (LDPE);
- POM as high density polyethylene (HDPE);
- wood as cardboard.

These equivalent materials were determined based on the composition of the initial materials ("closest" material available in EcoReport): for instance, EPDM is made of around 60% of LDPE usually. The choices were also supported by preliminary environmental analysis (see

Table 3, all results were obtained using the method CML 2 baseline 2000 V2.04). EPDM and LDPE on one hand have very close environmental impacts for most of the indicators. POM was not found in any Life Cycle Inventory and could thus not be compared to HDPE. Cardboard has impacts around twice as more important as wood impacts but this approximation is considered acceptable as soon as packaging is not identified as a major contributor to any type of environmental impact in the base cases analysis.

Impact category	Unit	EPDM rubber	LDPE	Wood	Cardboard
Abiotic depletion	kg Sb eq.	4.33E-02	4.16E-02	3.37E-03	5.71E-03
Acidification	kg SO ₂ eq.	2.91E-02	2.74E-02	3.43E-03	7.29E-03
Eutrophication	kg PO ₄ ³⁻ eq.	1.32E-03	1.02E-03	2.71E-04	6.77E-04
Global warming (GWP100)	kg CO ₂ eq.	3.24E+00	3.07E+00	-2.41E+00	-1.05E+00
Ozone layer depletion (ODP)	kg CFC-11 eq.	7.94E-06	8.32E-06	2.88E-07	6.79E-07
Photochemical oxidation	kg C ₂ H ₄	1.07E-02	3.92E-03	2.71E-04	3.53E-04

Table 3Life cycle impact assessment of missing individual components (part 1), for 1 kg⁴

No equivalent materials were found for chromium, cotton and PBT so only the 'category' cell (e.g. bulk plastics, ferrous material) and the weight were completed for these materials. Consequently, the specific impacts due to the nature of the material are not taken into account for these three categories but their weight is nonetheless included in the environmental analysis. This assumption is considered as acceptable since these materials are only found in BC 1 and the share of these material categories in the total weight of the dishwasher is very low (1% altogether).

A preliminary environmental analysis supports this assumption, by showing that these three materials have impacts in the same order of magnitude as (or smaller than) stainless steel (which represents more than 50% of the mass of BC 1) which justifies the fact that these materials are neglected based on the low mass allocated to them (see Table 4, all results were obtained using the method CML 2 baseline 2000 V2.04). Only for the ozone layer depletion indicator, the three materials have much higher impacts than stainless steel but this indicator is not taken into account in EcoReport. PBT was not found in any Life Cycle Inventory so that it was assumed that the impacts of PBT were similar to the ones of PET, to compare with the stainless steel.

⁴ All materials from ETH-ESU 96 database

Impact category	Unit	Stainless Steel	PET	Chromium	Cotton
Abiotic depletion	kg Sb eq.	2.35E-02	3.46E-02	1.92E-01	7.92E-02
Acidification	kg SO₂eq.	1.68E-01	9.77E-03	1.02E-01	1.34E-01
Eutrophication	kg PO ₄ ³ eq.	1.22E-03	3.00E-03	7.83E-03	2.81E-02
Global warming (GWP100)	kg CO₂eq.	3.68E+00	2.73E+00	2.65E+01	1.20E+01
Ozone layer depletion (ODP)	kg CFC-11 eq.	5.26E-09	1.21E-07	1.85E-06	3.27E-07
Photochemical oxidation	kg C ₂ H ₄	7.22E-03	6.23E-04	5.54E-03	4.10E-03

	5
Tabla 1	Life evaluation impact accomment of missing individual components (part 2) for $1 \log^3$
Table 4	nie cycle impaci assessmeni or missing individual components (dan z). Tor i ko

Regarding the sheet metal scrap percentage generated during the production phase, a rate of **5%** has been assumed, based on information contained in the preparatory study on washing machines and dishwashers (Lot 14).

2.3 Inputs in the distribution phase

Input data related to the distribution phase of the product to be used in the MEEuP EcoReport calculations are based on the volume of the packaged product. These volumes are exposed in Table 5 below.

Base case	Volume of packaged product (in m ³)
BC 1 Undercounter water-change	0.40
BC 2 Undercounter one-tank	0.48
BC 3 Hood-type	1.03
BC 4 Utensil/Pot	4.95
BC 5 One-tank conveyor-type	12.25
BC 6 Multi-tank conveyor-type	16.58

Two other pieces of information are required in this section. These parameters will be common for all BCs:

- Is it an ICT or Consumer Electronics product <15 kg:
 No
- Is it an installed appliance:
 Yes

⁵ All materials from Ecolnvent 2.0 database

2.4 Inputs in the use phase

Task 3 has shown that products have different efficiencies whether ideal user behaviour or real-life user behaviour is considered. According to Task 1, no EU or national standard is currently used to measure the energy, water or detergent consumption/efficiency of professional dishwashers. The analysis of the environmental impacts of the use phase is based on the real-life consumption of energy, water and detergent in each category. Based on the ideal use, the data takes into account the consumption for initial filling, the consumption in standby mode and the additional consumption through real-life user behaviour (partial workload, deviation from the use of the standard programs and maloperation, see Task 3).

Besides, all BCs are considered having only cold water input and an electrical heating system as these options are the most commonly found. This ensures that most of the improvement options considered later will be applicable for implementation on the BCs (for instance, a heat pump system is only relevant for a machine with a cold water input). Furthermore, the infrastructure for the alternatives to electrical heating (warm water supply, heating with steam or hot water) is not available in every place.

2.4.1 Electricity consumption

The electricity consumption during the use phase (see Task 3 and 4) is expected to be a major contributor to the environmental impacts of a professional dishwasher. The annual electricity consumption is required as an input in EcoReport, as well as the product lifetime which was evaluated in the market analysis (see Task 2). These inputs will also be used to calculate the Life Cycle Costs (LCC) of the BCs.

Table 6 presents the annual electricity consumption of the six BCs.

Base case	Total Electricity consumption (in kWh per year)
BC 1 Undercounter water-change	1 254
BC 2 Undercounter one-tank	5 253
BC 3 Hood-type	8 258
BC 4 Utensil/Pot	8 913
BC 5 One-tank conveyor-type	37 703
BC 6 Multi-tank conveyor-type	102 229

 Table 6
 Electricity consumption per year for all base cases

2.4.2 Water consumption

Table 7 presents the annual water consumption of the six base cases (cf. Task 3 and 4).

Table 7	Water consumption per year for all base cases

Base case	Water consumption (in m ³ per year)
BC 1 Undercounter water-change	25.92
BC 2 Undercounter one-tank	55.82
BC 3 Hood-type	86.65
BC 4 Utensil/Pot	89.52
BC 5 One-tank conveyor-type	255.68
BC 6 Multi-tank conveyor-type	643.64

2.4.3 Detergent and rinse aid consumption

Table 8 presents the annual detergent consumption of the six base cases (cf. Task 3 and 4).

Base caseDetergent consumption
(in kg per year)BC 1 Undercounter water-change87BC 2 Undercounter one-tank188BC 3 Hood-type292BC 4 Utensil/Pot294BC 5 One-tank conveyor-type865BC 6 Multi-tank conveyor-type2 146

 Table 8
 Detergent consumption per year for all base cases

2.4.4 Travelling effort for maintenance and repair over the product life

The number of kilometres travelled for maintenance and repair for one machine was estimated to be proportional to the product price of the appliance, according to discussions during the final stakeholder meeting. 200 km was taken as a basis for BC 2, in order to extrapolate linearly the other figures. Therefore it varies for each BC but the influence of this parameter on the outcomes of the environmental analysis is low. Table 9 presents the input figures by BC.

Table 0	Travelling effort for maintenance and renair over the product life, by base acce
Table 9	Travening error for maintenance and repair over the product life, by base case

Base case	Number of kilometres		
BC 1 Undercounter water-change	183		
BC 2 Undercounter one-tank	200		
BC 3 Hood-type	269		
BC 4 Utensil/Pot	600		
BC 5 One-tank conveyor-type	857		
BC 6 Multi-tank conveyor-type	2 571		

2.5 Inputs in the end-of-life phase

None of the BCs contains dangerous substances that can be released into the environment during the end-of-life phase, e.g. refrigerant or mercury. According to stakeholder feedback, the use of silver ions due to their antimicrobial properties is not applied anymore. Due to warnings from the German Bundesinstitut für Risikobewertung BfR (Federal Institute for Risk Assessment)⁶, especially for nano silver, the market seems to rethink. Possible harmful aspects, resistances of bacteria, and missing comprehensive data to allow conclusive risk assessments are the main reasons for the warnings (for more details see also Task 4).

Heat pumps for heat recovery are considered as improvement options so the refrigerants these devices contain will be taken into account in Tasks 6 and 7 only. Reflection of the market in Task 6 supports this consideration: heat pumps are usually not yet applied in smaller dishwasher categories due to lower profitability. With high-throughput machines (conveyor-type), the profitability is better, but pumps for heat recovery are still usually offered only as an option, and not as standard equipment. Therefore, they do not have a significant market share and it is justified that they are not included into the BCs.

It is assumed that an important share of the professional dishwashers' materials are recycled and reused. We assumed that during the end-of-life phase (cf. Task 4):

- 5% by weight of the products are not recovered (i.e. go to landfill)
- 95% by weight recovery rate; the materials follow one of the following options:
 - Metals are recycled;
 - Paper, cardboard, and plastics are incinerated (thermal recycling with possible benefits of energy recovery) or mechanically recycled. Plastics may also be directly reused;

⁶ More information at www.bfr.bund.de

 Other types of waste (concrete, bitumen) go to landfill. Hazardous waste consists only of electronic components, which are considered easy to disassemble and are in limited quantity (around 1% of the total weight).

Regarding the plastic fraction, the following end-of-life management options were estimated for all BCs, based on stakeholders' feedback:

- Re-use, closed loop recycling: 1%
- Material (or mechanical) recycling: 29%
- Thermal recycling: 70%.

2.6 Economic inputs

Economic data used for the calculations of the LCCs were elaborated in Task 2 (in particular product lifetime and product prices, electricity rates, and water and consumables rates). The product prices were estimated with the data aggregation used for the definition of the BCs and based on stakeholders' comments.

Table 10 presents the lifetimes, sales and stock figures and product prices for all six BCs. The installation of the dishwashers is taken into account in the product price so that there are no separate installation costs. The disposal costs were considered to be zero, as the machines are never landfilled but taken care of by recyclers.

Base case	Product lifetime (in years)	Sales (units)	Stock (units)	Product price (in €)	Maintenance costs (in €)
BC 1 Undercounter water-change	12	20 000	207 223	3 200	1 200
BC 2 Undercounter one-tank	8	138 200	1 012 355	3 500	1 540
BC 3 Hood-type	8	65 900	482 728	4 700	2 068
BC 4 Utensil/Pot	8	2 600	19 309	10 500	4 620
BC 5 One-tank conveyor-type	12	6 600	68 425	15 000	6 600
BC 6 Multi-tank conveyor-type	17	1 300	18 015	45 000	19 800

 Table 10
 EcoReport economic inputs of the base cases

The running costs will be calculated based on the user behaviour and the consumables rates presented in Table 11.

Base case	Electricity rate (Euro/kWh)	Gas rate (Euro/GJ)	Water rate (Euro/m ³)	Detergent/Rinse aid rate (Euro/kg)	
BC 1 Undercounter water-change	0 129	11.01			
BC 2 Undercounter one-tank	0.136	11.21	2.64		
BC 3 Hood-type	0 105	10.01		2 00	
BC 4 Utensil/pot	0.105	10.01		3.00	
BC 5 One-tank conveyor-type	0.000	9 7 0			
BC 6 Multi-tank conveyor-type	0.090	0.79			

Table 11	Eneray.	water and	consumables	rates.	by base case
	Lincigy,	water and	consumables	raico,	by buse cuse

The discount rate was provided by the European Commision: 4% will be used for all BCs.

There is a significant efficiency difference between the appliances being sold today and the appliances being used in the stock. This is a direct result from the steady progress that the industry has been making in environmental efficiency, combined with the quite long lifetimes of products in this study. This could lead to an underestimation of the environmental impacts of the products in this study as the BCs all represent products currently sold on the market. The overall improvement ratios (market over stock, during use phase) which are required in EcoReport are used here as correction factors for this parameter. They were calculated from data presented in Task 2 and reminded in Table 12. For each BC, this improvement ratio indicates the difference of global efficiency during the use phase between the new sales and the current stock. We assumed that a representative product of the current stock was "half the product lifetime" old (e.g. 4 years for hood-type dishwashers) and we scaled down (proportionally) the global improvement exposed in Table 12, which is related to a ten years gap. For BC 1, a ratio of 1.00 was considered as manufacturers stated that these products have not really changed in the past decade.

D	Improvement bet	Overall			
Base case	Energy consumption	Water consumption	Global improvement ⁷	ratio	
BC 1 Undercounter water- change	-	-	-	1.00	
BC 2 Undercounter one-tank	30%	16%	23%	1.09	
BC 3 Hood-type	29%	16%	22.5%	1.09	
BC 4 Utensil/Pot	29%	20%	24.5%	1.10	
BC 5 One-tank conveyor-type	37%	35%	36%	1.22	
BC 6 Multi-tank conveyor-type	37%	33%	35%	1.30	

 Table 12
 Overall improvement ratios for all base cases

⁷ Simple average between energy and water consumptions.

3 Base case environmental impact assessment

The aim of this subtask is to assess the environmental impact of each base case following the MEEuP (EcoReport Unit Indicators) for each life cycle stage:

- Raw Materials Use and Manufacturing (Production phase);
- Distribution;
- Use;
- End-of-Life.

The base case environmental impact assessment will lead to an identification of basic technological design parameters being of outstanding environmental relevancy⁸. These parameters will be listed as they will serve as an important input to the identification of ecodesign options. The assessment results are tracked back to the main contributing components, materials and features of the professional dishwashers.

Seventeen environmental indicators are considered in EcoReport. Of these, 13 are relevant to professional dishwashers, while others have none to very little impact:

- Total Gross Energy Requirement, in MJ primary;
- Electricity, in kWh_e;
- Process Water, in litre;
- Hazardous Solid Waste, in g;
- Non-hazardous waste, in g;
- Global Warming Potential (GWP), in CO₂ equivalent;
- Acidification potential, in SO₂ equivalent;
- Volatile Organic Compounds (VOC), in mg;
- Persistent Organic Pollutants (POP), in I-Teq;
- Heavy Metals (HM), in Nickel equivalent;
- Polycyclic Aromatic Hydrocarbons (PAH), in Nickel equivalent;
- Particulate Matter;
- Eutrophication Potential, in PO₄ equivalent.

⁸ As far as the MEEuP EcoReport allows the identification of such indicators.

3.1 Base case 1: Undercounter water-change

Table 13 shows the environmental impacts of an undercounter water-change dishwasher over its whole life cycle. The total energy consumption for the whole life cycle of the BC 1 is 196.5 GJ, of which 159 GJ (i.e. 15.1 MWh_{e}) electricity.⁹

	Table 13	13 Life Cycle Impact (per unit) of base case 1 – Undercounter	water-change
--	----------	---	--------------

Nr	Life cycle Impact per produ	ict:						Date	Author		
1	Under counter, water change								BIO		
	Life Cycle phases>		P	RODUCI	FION	DISTRI-	USE	E	ND-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	g			8523			5966	2557	8523	0
2	TecPlastics	g			1014			710	304	1014	0
3	Ferro	g			27266			1363	25903	27266	0
4	Non-ferro	g			1302			65	1237	1302	0
5	Coating	g			0			0	0	0	0
6	Electronics	g			448			448	0	448	0
7	Misc.	g			11317			566	10751	11317	0
	Total weight	g			49870			9118	40752	49870	0
		000000000000000000000000000000000000000	500000000000000000000000000000000000000	60040004000 8 00040000000000	080000000000008000000000000000000000000	***************************************	000000000000000000000000000000000000000	800000000000000000000000000000000000000	90000000000000000000000000000000000000	0000000080000000000000800000	beccerco#concorcorcorcorcorcorcorcor
	see note!										
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	3274	792	4066	496	191896	641	587	54	196511
9	of which, electricity (in primary MJ)	MJ	592	474	1066	1	158015	0	11	-11	159071
10	Water (process)	ltr	2246	7	2253	0	322392	0	7	-7	324637
11	Water (cooling)	ltr	1199	221	1420	0	421358	0	58	-58	422720
12	Waste, non-haz./ landfill	g	48858	2660	51518	233	222449	3117	41	3076	277276
13	Waste, hazardous/incinerated	g	350	0	350	5	4414	6676	6	6670	11439
		***************************************	&		***************************************			***************************************			
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	220	44	265	31	8390	48	36	12	8697
15	Ozone Depletion, emissions	mg R-11 eq.		<u></u>		negl	ligible	ł			
16	Acidification, emissions	g SO2 eq.	2043	190	2233	92	49402	98	50	48	51776
17	Volatile Organic Compounds (VOC)	g	56	0	56	8	80	2	1	1	145
18	Persistent Organic Pollutants (POP)	ng i-Teq	222	14	236	1	1257	22	0	22	1516
19	Heavy Metals	mg Nieq.	3793	32	3825	12	3417	175	0	175	7429
	PAHs	mg Nieq.	172	0	173	20	474	0	1	-1	666
20	Particulate Matter (PM, dust)	g	1844	29	1874	1367	2686	878	2	876	6803
		<u>(</u>	L	L				L			
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	2427	0	2427	0	1043	52	0	52	3523
22	Eutrophication	g PO4	71	0	72	0	55965	3	0	3	56039
23	Persistent Organic Pollutants (POP)	stent Organic Pollutants (POP) ng i-Teq negligible									

Figure 2 exposes the contribution of each life cycle phase to each impact. The total impact of a category is shown as 100%, but it does not mean that each of the impacts in each category

 $^{^9}$ In MEEuP, a conversion factor of 10.5 MJ/kWh_e for the public grid is specified.

is equally important. The categories are not comparable. Several observations can be made from this analysis:

- Within the production phase, the manufacturing impacts are very small: the maximum contribution is 1% in non-hazardous waste, because of the sheet metal and plastic scrap generated during the manufacturing process. The material extraction and production are responsible for the important contributions of this phase to the quantity of landfilled waste (18%) because of the general metal content, VOC (38%) emissions and PM (27%) because of the bitumen content and HM (51%) and POP (15%) emissions because of the stainless steel contained in the product.
- As expected, the use phase is by far the main contributor to the following impacts: total energy (97.7%) and electricity consumption (99.3%), water for processing (99.3%), non-hazardous waste (80%), greenhouse gases emissions (96%), acidification (95%), POP (83%), PAHs (71%) and eutrophication (99.8%). The water use during the use phase is the main contributor for the water processing impact. The detergent is the source of almost 100% of the eutrophication impact during the use phase, and also makes a slight contribution for waste generation, GWP and POP emissions. The maintenance and repair services are the main reason for the PM and PAHs emissions because of the travels. For the remaining shares, the electricity consumption is the main source for the impacts especially total energy and electricity, GWP and acidification.
- The distribution phase is negligible for all impacts except for PM for which it accounts for around 20% of the total emissions, and for VOC emissions (6%). This is due to the product transportation.
- The end-of-life is also negligible for all impacts except for the generation of hazardous waste (58%) and PM (13%). This is due to the high recycling rate (because of the plastics and metals content) which partly counterbalances the negative impacts of incinerating or landfilling the few non recyclable materials. When the red bar is placed below the x-axis on the figure, it means that the end-of-life actually results in a small credit in the impact category considered: in particular, this is the case for energy and electricity consumption.

Figure 2 Distribution of environmental impacts of BC 1 per life cycle phase

3.2 Base case 2: Undercounter one-tank

Table 14 shows the environmental impacts of an undercounter one-tank dishwasher over its whole life cycle. The total energy consumption for the whole life cycle of the BC 2 is 497 GJ, of which 443 GJ (i.e. 42.2 MWh_e) electricity.

Table 14	Life Cycle Impact (per unit) of base case 2 – Upc	lercounter one-tank
		loroounitor one turnt

Nr	r Life cycle Impact per product:						Date Author				
2	Under counter, one tank						BIO				
	Life Cycle phases>		PF	RODUCT	ION	DISTRI-	USE	E	ND-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit			0075			5050	0400	0075	•
1		y a			80/5			5653	2423	80/5	0
2		g			1500			1050	450	1500	U
3		9			54510			2726	51/85	54510	0
4		9			5850			293	5558	5850	0
5		9			0			500	0	0	0
6	Electronics	9			500			500	0	500	0
7		g			8750			438	8313	8750	0
	l otal weight	g			79185			10658	68527	79185	0
								S	ee note!		
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	5392	1284	6676	585	489932	740	715	26	497218
9	of which, electricity (in primary MJ)	MJ	928	766	1694	1	441269	0	11	-11	442954
10	Water (process)	ltr	4328	11	4339	0	477182	0	7	-7	481514
11	Water (cooling)	ltr	1410	355	1765	0	1176690	0	58	-58	1178396
12	Waste, non-haz./ landfill	g	106962	4428	111389	269	568526	4863	41	4822	685007
13	Waste, hazardous/ incinerated	g	390	0	390	5	11281	6703	6	6696	18373
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	422	72	494	36	21399	55	45	10	21938
15	Ozone Depletion, emissions	mg R-11 eq.				negl	igible				
16	Acidification, emissions	g SO2 eq.	3905	309	4214	108	126177	112	62	51	130550
17	Volatile Organic Compounds (VOC)	g	12	0	12	10	192	2	1	2	216
18	Persistent Organic Pollutants (POP)	ng i-Teq	475	31	505	2	3213	34	0	34	3753
19	Heavy Metals	mg Nieq.	7908	72	7980	14	8580	204	0	204	16777
	PAHs	mg Nieq.	331	0	331	24	1071	0	1	-1	1426
20	Particulate Matter (PM, dust)	g	496	48	544	1641	4461	1007	2	1005	7651
	B		*******	10000000000000000000000000000000000000	*******			tionerrand	••••••••••••••••••••••••••••••••••••••		
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	4965	0	4966	0	2895	61	0	61	7921
22	Eutrophication	g PO4	136	1	137	0	80631	3	0	3	80771
23	Persistent Organic Pollutants (POP)	ng i-Teq		100000000000000000000000000000000000000		negl	igible	5			

Figure 3 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

• Within the production phase, the manufacturing impacts are very small: the maximum contribution is 0.8% in POP emissions, because of the sheetmetal scrap generated

Öko-Institut e.V.

during the manufacturing process. The material extraction and production are responsible for the important contributions of this phase to the quantity of landfilled waste (16%) because of the general metal content, POP (13%) and HM (47%) emissions because of the stainless steel contained in the product and PAH emissions (23%) because of the aluminium parts.

- As expected, the use phase is by far the main contributor to the following impacts: total energy (98.5%) and electricity consumption (99.6%), water for processing (99%), non-hazardous waste (83%), greenhouse gases emissions (97.5%), acidification (97%), POP (86%), PAHs (75%) and eutrophication (99.8%). The water use during the use phase is the main contributor for the water processing impact. The detergent is the source of almost 100% of the eutrophication impact during the use phase, and also makes a slight contribution (around 10%) for waste generation, GWP and POP emissions. The maintenance and repair services are the main reason for the PM emissions because of the travels. For the remaining shares, the electricity consumption is the main source for the impacts, especially total energy and electricity, GWP and acidification.
- The distribution phase is negligible for all impacts except for PM for which it accounts for around 21% of the total emissions, and for VOC emissions (5%). This is due to the product transportation.
- The end-of-life is also negligible for all impacts except for the generation of hazardous waste (36%) and PM (13%). This is due to the high recycling rate (because of the plastics and metals content) which partly counterbalances the negative impacts of incinerating or landfilling the few non recyclable materials. When the red bar is placed below the x-axis on the figure, it means that the end-of-life actually results in a small credit in the impact category considered: in particular, this is the case for energy and electricity consumption.

Öko-Institut e.V.

3.3 Base case 3: Hood-type

Table 15 shows the environmental impacts of a hood-type dishwasher over its whole life cycle. The total energy consumption for the whole life cycle of the BC 3 is 781 GJ, of which 696 GJ (i.e. 66.3 MWh_{e}) electricity. This BC presents a very close impact profile to base case 2, due to their technical and composition similarities.

Nr	Life cycle Impact per product:					Date Author					
3	Hood type						BIO				
	Life Cycle phases>		PR	ODUCT	ION	DISTRI-	USE	EI	ND-OF-LI	FE*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials										
	Materials	unit	1		0465			6606	2040	0465	•
1		9			9405			1260	2040	9405	0
2		g	ļ		1800			1200	00004	1800	U
3		g			98590			4930	93661	98590	0
4		g			7700			385	7315	7700	0
5	Coating	g			0			0	0	0	0
6	Hectronics	g			600			600	0	600	0
7	MISC.	g			17000			850	16150	17000	0
	Total weight	g			135155			14650	120505	135155	0
								S	ee note!		
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	8786	2058	10844	1195	769186	1014	1005	9	781234
9	of which, electricity (in primary MJ)	MJ	1449	1227	2676	3	693699	0	12	-12	696365
10	Water (process)	ltr	7750	18	7768	0	741302	0	8	-8	749062
11	Water (cooling)	ltr	1892	567	2459	0	1849817	0	69	-69	1852207
12	Waste, non-haz./ landfill	g	170577	7173	177750	519	892728	8296	48	8247	1079244
13	Waste, hazardous/ incinerated	g	468	0	468	10	17712	7886	8	7878	26068
			800000000000000000000000000000000000000	brocorocorocomocorocoroco	000800000000000000000000000000000000000	800000000000000000000000000000000000000	***************************************	800400400000000000000000000000000000000	800000000000000000000000000000000000000	60000000000000000000000000000000000000	0000000E000000000000000000000000000000
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	723	115	838	72	33592	76	66	10	34511
15	Ozone Depletion, emissions	mg R-11eq.				negl	igible	2		<u> 2</u>	200500040050050050050050050050050050
16	Acidification, emissions	g SO2 eq.	6682	496	7178	218	198119	153	88	65	205581
17	Volatile Organic Compounds (VOC)	q	19	1	20	21	300	3	1	2	344
18	Persistent Organic Pollutants (POP)	ng i-Teg	828	55	883	3	5046	57	0	57	5989
19	Heavy Metals	mg Ni ea.	14433	128	14561	26	13469	282	0	282	28338
	PAHs	ma Ni ea.	417	0	417	48	1658	0	1	-1	2122
20	Particulate Matter (PM. dust)	a a	861	76	937	3521	6608	1372	3	1369	12435
		19								1	
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	8891	0	8891	1	4562	83	0	83	13536
22	Eutrophication	gPO4	238	1	239	0	125236	5	0	4	125479
23	Persistent Organic Pollutants (POP)	ng i-Teg		L		negl	igible			L	

 Table 15
 Life Cycle Impact (per unit) of base case 3 – Hood-type

Figure 4 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

- Within the production phase, the manufacturing impacts are very small: the maximum contribution is 0.9% in POP emissions, because of the sheet metal scrap generated during the manufacturing process. The material extraction and production are responsible for the important contributions of this phase to the quantity of landfilled waste (16%) because of the general metal content, POP (14%) and HM (51%) emissions because of the stainless steel contained in the product and PAH emissions (20%) because of the aluminium parts.
- As expected, the use phase is by far the main contributor to the following impacts: total energy (98.5%) and electricity consumption (99.6%), water for processing (99.0%), non-hazardous waste (83%), greenhouse gases emissions (97.3%), acidification (96.3%), POP (84%), PAHs (78%) and eutrophication (99.8%). The water use during the use phase is the main contributor for the water processing impact. The detergent is the source of almost 100% of the eutrophication impact during the use phase, and also makes a slight contribution (around 10%) for waste generation, GWP and POP emissions. The maintenance and repair services are the main reason for the PM emissions because of the travels. For the remaining shares, the electricity consumption is the main source for the impacts, especially total energy and electricity, GWP and acidification.
- The distribution phase is negligible for all impacts except for PM for which it accounts for around 28% of the total emissions, and for VOC emissions (6%). This is due to the product transportation.
- The end-of-life is also negligible for all impacts except for the generation of hazardous waste (30%) and PM (11%). This is due to the high recycling rate (because of the plastics and metals content) which partly counterbalances the negative impacts of incinerating or landfilling the few non recyclable materials. When the red bar is placed below the x-axis on the figure, it means that the end-of-life actually results in a small credit in the impact category considered: in particular, this is the case for energy and electricity consumption.

Figure 4 Distribution of environmental impacts of BC 3 per life cycle phase

3.4 Base case 4: Utensil/pot

Table 16 shows the environmental impacts of a utensil/pot dishwasher over its whole life cycle. The total energy consumption for the whole life cycle of the BC 4 is 851 GJ, of which 754 GJ (i.e. 71.8 MWh_e) electricity.

Nie		4 -						Data	A		
INF	Life cycle impact per produ	ICT:				l		Date	Author		
4	Utensil/Pot								BIO		
	Life Cycle phases>		PR	ODUCTI	ON	DISTRI-	USE	E	ND-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	-
	Materials	unit									
1	Bulk Plastics	g			16000			11200	4800	16000	0
2	TecPlastics	g			4000			2800	1200	4000	0
3	Ferro	g			172000			8600	163400	172000	0
4	Non-ferro	g			12400			620	11780	12400	0
5	Coating	g			0			0	0	0	0
6	Electronics	g			2100			2100	0	2100	0
7	Misc.	g			19500			975	18525	19500	0
	Total weight	g			226000			26295	199705	226000	0
								s	ee note!		
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	15858	3617	19475	5549	825601	1753	1657	96	850720
9	of which, electricity (in primary MJ)	MJ	3150	2157	5306	14	748745	0	22	-22	754044
10	Water (process)	ltr	14090	32	14121	0	768006	0	15	-15	782113
11	Water (cooling)	ltr	3310	997	4306	0	1996555	0	122	-122	2000740
12	Waste, non-haz./ landfill	g	284834	12602	297436	2297	958311	13873	86	13787	1271831
13	Waste, hazardous/ incinerated	g	1518	1	1518	46	19002	14000	14	13987	34552
		*****			***************************************				*********		
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	1316	202	1518	328	36084	131	107	23	37953
15	Ozone Depletion, emissions	mg R-11eq.	000000000000000000000000000000000000000		000000000000000000000000000000000000000	neglig	jible	bootoomootootootoomoo	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
16	Acidification, emissions	g SO2 eq.	12000	872	12872	1002	212538	265	144	121	226533
17	Volatile Organic Compounds (VOC)	g	43	1	44	102	334	6	2	4	484
18	Persistent Organic Pollutants (POP)	ng i-Teq	1441	96	1536	13	5416	96	0	96	7061
19	Heavy Metals	mg Ni eq.	25396	224	25621	117	14704	487	0	487	40928
	PAHs	mg Ni eq.	719	0	719	220	1942	0	1	-1	2881
20	Particulate Matter (PM, dust)	g	1518	134	1652	16920	9840	2373	4	2369	30781
								10000000000000000000000000000000000000	#		
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	16005	0	16006	4	4987	144	0	144	21140
22	Eutrophication	g PO4	412	2	414	0	126097	8	1	8	126518
23	Persistent Organic Pollutants (POP)	ng i-Teq				neglig	jible		***************************************		

Table 16	Life Cycle Impact (per unit) of base case 4 – Litensil/pot
	Life Cycle impact (per unit) of base case 4 – Otensii/poi

Figure 5 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

- Within the production phase, the manufacturing impacts are very small: the maximum contribution is 1.4% in POP emissions, because of the sheet metal scrap generated during the manufacturing process. The material extraction and production are responsible for the important contributions of this phase to the quantity of landfilled waste (22%) because of the general metal content, POP (20%) and HM (62%) emissions because of the stainless steel contained in the product and PAH emissions (25%) because of the aluminium parts.
- As expected, the use phase is by far the main contributor to the following impacts: total energy (97.0%) and electricity consumption (99.3%), water for processing (98.2%), non-hazardous waste (75%), greenhouse gases emissions (95%), acidification (94%), POP (77%), PAHs (67%) and eutrophication (99.7%). The water use during the use phase is the main contributor for the water processing impact. The detergent is the source of almost 100% of the eutrophication impact during the use phase, and also makes a slight contribution (around 10%) for waste generation, GWP and POP emissions. The maintenance and repair services are the main reason for the PM emissions because of the travels. For the remaining shares, the electricity consumption is the main source for the impacts, especially total energy and electricity, GWP and acidification.
- The distribution phase is negligible for all impacts except for PM for which it accounts for around 55% of the total emissions, and for VOC (21%) and PAHs (8%) emissions. This is due to the product transportation.
- The end-of-life is also negligible for all impacts except for the generation of hazardous waste (40%) and PM (8%). This is due to the high recycling rate (because of the plastics and metals content) which partly counterbalances the negative impacts of incinerating or landfilling the few non recyclable materials. When the red bar is placed below the x-axis on the figure, it means that the end-of-life actually results in a small credit in the impact category considered: in particular, this is the case for energy and electricity consumption.

3.5 Base case 5: Conveyor-type one-tank

mg Hg/20

gPO4

Table 17 shows the environmental impacts of a conveyor-type one-tank dishwasher over its whole life cycle. The total energy consumption for the whole life cycle of the BC 5 is 5.19 TJ, of which 4.77 GJ (i.e. 454 MWh_e) electricity.

Life cycle Impact per product: Date Author One-tank conveyor-type BIO USE Life Cycle phases --> PRODUCTION DISTRI-END-OF-LIFE* TOTAL BUTION Resources Use and Emissions Material Manuf. Disposal Recycl. Total Total Materials unit 1 Bulk Plastics g 2 TecPlastics g 3 Ferro 33511 636700 670210 g 4 Non-ferro 5450 103545 108995 g 5 Coating g 6 Electronics g 7 Misc. g 126364 846861 973225 Total weight g see note! Other Resources & Waste debet credit 8 Total Energy (GER) 72236 15895 M.I 9 of which, electricity (in primary MJ) MJ -116 10 Water (process) -77 ltr 11 Water (cooling) -642 ltr 12 Waste, non-haz./ landfill g 13 Waste, hazardous/ incinerated g Emissions (Air) 14 Greenhouse Gases in GWP100 kg CO2 eq. 15 Ozone Depletion, emissions mg R-11eq. negligible 16 Acidification, emissions g SO2 eq. 17 Volatile Organic Compounds (VOC) g 18 Persistent Organic Pollutants (POP) ng i-Teq 19 Heavy Metals mg Nieq. PAHs mg Nieq. -6 20 Particulate Matter (PM, dust) g Emissions (Water) 21 Heavy Metals

negligible

T.L. 47			
Table 17	Life Cycle Impact (per uni	t) of base case 5 – Conveyor-type one-ta	nĸ

22 Eutrophication

23 Persistent Organic Pollutants (POP) ng i-Teq

Figure 6 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

- Within the production phase, the manufacturing impacts are very small: the maximum contribution is 1% in POP emissions, because of the sheet metal scrap generated during the manufacturing process. The material extraction and production are responsible for the important contributions of this phase to the quantity of landfilled waste (22%) because of the general metal content, POP (15%) and HM (52%) emissions because of the stainless steel contained in the product and PAH emissions (36%) because of the aluminium parts.
- As expected, the use phase is by far the main contributor to the following impacts: total energy (98%) and electricity consumption (99.5%), water for processing (98.4%), non-hazardous waste (76%), greenhouse gases emissions (97%), acidification (95%), POP (83%), PAHs (61%) and eutrophication (99.7%). The water use during the use phase is the main contributor for the water processing impact. The detergent is the source of almost 100% of the eutrophication impact during the use phase, and also makes a slight contribution (around 7%) for waste generation, GWP and POP emissions. The maintenance and repair services represent "only" 25% of the PM emissions in the use phase (in comparison with previous base cases) because of the travels. For the remaining shares, the electricity consumption is the main source for the impacts, especially total energy and electricity, GWP, acidification and POP emissions.
- The distribution phase is negligible for all impacts except for PM for which it accounts for around 44% of the total emissions, and for VOC (11%) and PAHs (3%) emissions. This is due to the product transportation.
- The end-of-life is also negligible for all impacts except for the generation of hazardous waste (37%) and PM (12%). This is due to the high recycling rate (because of the plastics and metals content) which partly counterbalances the negative impacts of incinerating or landfilling the few non recyclable materials. When the red bar is placed below the x-axis on the figure, it means that the end-of-life actually results in a small credit in the impact category considered: in particular, this is the case for energy and electricity consumption.

Figure 6 Distribution of environmental impacts of BC 5 per life cycle phase

3.6 Base case 6: Conveyor-type multi-tank

Table 18 shows the environmental impacts of a conveyor-type multi-tank dishwasher over its whole life cycle. The total energy consumption for the whole life cycle of the BC 6 is 19.6 TJ, of which 18.3 TJ (i.e. 1.74 GWh_{e}) electricity.

Nr	Life cycle Impact per produ	ict:					Date Author				
6	Multi-tank conveyor-type								BIO		
	Life Cycle phases>		PR	ODUCTI	ON	DISTRI-	USE	E	ND-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	g			110090			77063	33027	110090	0
2	TecPlastics	g			18660			13062	5598	18660	0
3	Ferro	g			1042440			52122	990318	1042440	0
4	Non-ferro	g			103700			5185	98515	103700	0
5	Coating	g			0			0	0	0	0
e	Electronics	g			15400			15400	0	15400	0
7	Misc.	g			174710			8736	165975	174710	0
	Total weight	g			1465000			171568	1293433	1465000	0
	Other Resources & Waste							debet	see note! credit		
8	Iotal Energy (GER)	MJ	103175	22392	125567	18466	19422834	11321	11047	274	19567140
9	of which, electricity (in primary MJ)	MJ	20506	13355	33861	47	18248215	1	143	-142	18281981
10	Water (process)	ltr	86267	197	86464	0	12187151	0	94	-94	12273521
11	Water (cooling)	ltr	19750	6173	25924	0	48661263	0	785	-785	48686402
12	Waste, non-haz./ landfill	g	1962298	77932	2040230	7574	22531445	89925	552	89373	24668623
13	Waste, hazardous/ incinerated	g	10890	3	10893	151	447497	90127	87	90041	548581
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	8280	1250	9530	1087	847850	843	719	124	858591
15	Ozone Depletion, emissions	mg R-11eq.				neg	ligible				
16	Acidification, emissions	g SO2 eq.	76199	5396	81595	3328	5002741	1711	962	749	5088412
17	Volatile Organic Compounds (VOC)	g	262	6	269	342	7415	39	12	26	8052
18	Persistent Organic Pollutants (POP)	ng i-Teq	8986	586	9573	43	127356	621	0	621	137592
19	Heavy Metals	mg Ni eq.	152879	1374	154253	384	335974	3143	0	3143	493755
	PAHs	mg Ni eq.	6282	2	6284	732	39648	0	8	-8	46657
20	Particulate Matter (PM, dust)	g	9431	830	10261	56672	129563	15323	29	15294	211790
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	97876	1	97876	12	118636	928	0	928	217453
22	Eutrophication	gPO4	2484	10	2494	0	1956057	53	3	50	1958601
23	Persistent Organic Pollutants (POP)	na i-Tea	1		·····	nec	liaible		S	ñ	

Table 18 Life Cycle Impact (per unit) of base case 6 – Conveyor-type multi-tank

Figure 7 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

- Within the production phase, the manufacturing impacts are very small: the maximum contribution is 0.4% in POP emissions, because of the sheet metal scrap generated during the manufacturing process. The material extraction and production are responsible for the contributions of this phase to the quantity of landfilled waste (8%) because of the general metal content, POP (7%) and HM (31%) emissions because of the stainless steel contained in the product and PAH emissions (13%) because of the aluminium parts.
- As expected, the use phase is by far the main contributor to the following impacts: total energy (99.3%) and electricity consumption (99.8%), water for processing (99.3%), non-hazardous waste (91%), greenhouse gases emissions (98.8%), acidification (98.3%), POP (93%), PAHs (85%) and eutrophication (99.9%). The water use during the use phase is the main contributor for the water processing impact. The detergent is the source of almost 100% of the eutrophication impact during the use phase, and also makes a slight contribution (around 7%) for waste generation, GWP and POP emissions. The maintenance and repair services represent "only" 8% of the PM emissions in the use phase (in comparison with previous base cases) because of the travels. For the remaining shares, the electricity consumption is the main source for the impacts, especially total energy and electricity, GWP, acidification and POP emissions.
- The distribution phase is negligible for all impacts except for PM for which it accounts for around 27% of the total emissions and for VOC (4%) emissions. This is due to the product transportation.
- The end-of-life is also negligible for all impacts except for the generation of hazardous waste (16%) and PM (7%). This is due to the high recycling rate (because of the plastics and metals content) which partly counterbalances the negative impacts of incinerating or landfilling the few non recyclable materials. When the red bar is placed below the x-axis on the figure, it means that the end-of-life actually results in a small credit in the impact category considered: in particular, this is the case for energy and electricity consumption.

3.7 Conclusions

The results of the impact assessment are very similar for the six BCs, not in absolute values but in predominance of certain key elements on the environmental impacts:

- The production phase impacts are mostly due to the stainless steel and the aluminium content of the professional dishwashers. The use of these materials however seems necessary so that it is not expected that improvement options enable to lower significantly the impacts due to this life cycle phase.
- The use phase is the main contributing phase for most environmental indicators, especially energy consumption (and electricity consumption, always over 97% of the total impacts), GWP and acidification. The contribution of this phase is mainly due to the amount of electricity needed to run the appliances during the whole lifetime. Besides, the high detergent consumption induces eutrophication impacts and the water consumption obviously results in use of water. Therefore, improvement options enabling energy, water and detergent savings in operation will be the most effective options in reducing the environmental impact of professional dishwashers.
- The distribution is always negligible except for the emissions of particulate matter, which are due to the transportation of the appliances, which is inevitable. Manufacturing lighter machines would reduce this impact but is not considered as a priority option (and manufacturers probably already optimise this aspect as it directly influences their logistic costs).
- The end-of-life mainly contributes significantly to the quantity of hazardous waste generated. However, this indicator is only an intermediate indicator as the consequences of the management of the hazardous waste (often through incineration) are also accounted for in the emissions environmental impacts, where no major contribution of this phase appears. As no harmful compound has been identified in the bill of materials, it is unlikely that any improvement option will reduce the impacts of this phase. On the contrary, the possible implementation of heat pumps (containing refrigerant) in more efficient products may result in additional impacts.

Looking at the results of the Ecodesign preparatory study on domestic washing machines and dishwashers (Lot 14 for DG TREN), the environmental analysis of the base cases shows many similarities. Concerning emissions, the use phase is also the main contributor for greenhouse gases, acidification and VOC. Similarly, the production phase contributes to PAHs and heavy metals emissions and the distribution phase contributes to particulate matter emissions (although the use phase remains the main contributor). Energy consumption and water use are also identified as the most relevant elements in the use phase. The main difference lies in the fact that the contribution of the use phase is globally more important in the case of professional dishwashers, at the expenses of the other phases. This results from the fact that professional appliances are used more intensively than household appliances.

4 Base case life cycle costs

The result of the procurement process should be the cheapest dishwasher, having the lowest total cost of ownership, taking into account the consumables expenditure and optimised for a given application.

Table 19 exposes the details of the LCC over the lifetime for each base case (see assumed lifetime of base cases in Table 20).¹⁰ Installation costs and end-of-life costs were estimated to be zero in Task 2 and are not displayed in the table.

Itom	Base case								
ltem	1	2	3	4	5	6			
Product price (Euro)	3 200	3 500	4 700	10 500	15 000	45 000			
Repair and maintenance costs (Euro)	939	1 296	1 740	3 888	5 162	14 169			
Electricity cost (Euro)	1 624	4 881	5 838	6 301	31 846	111 932			
Water cost (Euro)	642	992	1 540	1 591	6 335	20 672			
Detergent/Rinse aid cost (Euro)	2 450	3 797	5 898	5 938	24 354	78 323			
Life Cycle Cost (Euro)	8 854	14 466	19 716	28 219	82 697	270 096			

 Table 19
 EcoReport outcomes of the LCC calculations of the six base cases

Figure 8 shows the contribution of the product price and the resources and consumables costs for the six base cases LCC.

For BC 1 and BC 4, the product price represents 36-37% of the global LCC. For BC 2 and BC 3, the product price only accounts for 24% and gets an even smaller share for heavy duty appliances (18% for BC 5 and 17% for BC 6). This phenomenon makes sense as the lifetimes are longer, resulting in larger total costs for consumables and resources. Repair and maintenance follow the same evolution as they were estimated through a percentage of the product price. For the resources and consumables shares, the opposite happens: electricity only represent 18% for BC 1 and 22% for BC 4, while it reaches 39% for BC 5 and 41% for BC 6. The detergent share is comprised between 21% and 30% for all base cases and the share for water is less variable (between 6% and 8%). BC 1 is the only base case for which

¹⁰ Annual costs being discounted taking into account the discount rate of 4%.

the detergent costs are significantly more important than the electricity costs (they are similar for BC 3 and BC 4).

Figure 8 Breakdown of base cases' LCC

5 EU Totals

This section provides the environmental assessment of the base cases at the EU-27 level using stock and market data from Task 2. The total impacts cover:

- The life cycle environmental impact of the new products in 2009 (i.e. impacts of the sales);
- The annual (2009) impact of production, use and disposal of the product group, and the total LCC (i.e. impacts and LCC of the stock).

5.1 Market data

Table 20 displays the market data of the six BCs in EU-27 in 2009.

Base case	Lifetime (years)	Annual sales (units/year)	EU stock (units)
BC 1 Undercounter water-change	12	20 000	207 223
BC 2 Undercounter one-tank	8	138 200	1 012 355
BC 3 Hood-type	8	65 900	482 728
BC 4 Utensil/Pot	8	2 600	19 309
BC 5 One-tank conveyor-type	12	6 600	68 425
BC 6 Multi-tank conveyor-type	17	1 300	18 015

Table 20Market and technical data for all base cases in 2009

5.2 Life Cycle Environmental Impacts

Table 21 shows the total environmental impacts in 2009 of all professional dishwashers in stock in EU-27, based on the extrapolation of the base cases impacts (all have the same impacts as the base case of their category). Thus, these figures include the production and distribution impacts of the products sold in 2009, the use phase impacts of the stock products being used during 2009 and the end-of-life impacts of the products being discarded that same year.

		Base case					
Environmental Impact	1	2	3	4	5	6	
Total Energy (GER) (in PJ)	3.4	68.6	51.4	2.3	36.1	26.9	188.6
of which electricity (in TWh)	0.3	5.8	4.4	0.2	3.2	2.4	16.2
Water process (in million m ³)	5.6	66.4	49.3	2.1	24.0	16.9	164.3
Waste, non-hazardous/landfill (in kt)	4.9	94.5	71.0	3.4	53.2	33.8	260.8
Waste, hazardous/ incinerated (in kt)	0.22	2.54	1.72	0.09	1.35	0.75	6.7
Emissions to air							
Greenhouse Gas in GWP100 (in Mt CO2eq.)	0.15	3.03	2.27	0.10	1.59	1.18	8.3
Acidification, emissions (in kt SO ₂ eq.)	0.9	18.0	13.5	0.6	9.5	7.0	49.6
Volatile Organic Compounds (VOC) (in kt)	0.003	0.030	0.023	0.001	0.016	0.011	0.1
Persistent Organic Pollutants (POP) (in g i-Teq.)	0.03	0.52	0.39	0.02	0.28	0.19	1.4
Heavy Metals (in ton Ni eq.)	0.14	2.32	1.87	0.11	1.31	0.67	6.4
PAHs (in ton Ni eq.)	0.01	0.20	0.14	0.01	0.12	0.06	0.5
Particulate Matter (PM, dust) (in kt)	0.13	1.06	0.82	0.08	0.65	0.29	3.0
Emissions to water							
Eutrophication (in kt PO ₄)	0.97	11.14	8.25	0.34	3.88	2.70	27.3

 Table 21
 Environmental impacts of the EU-27 stock in 2009 for all base cases

Summary of environmental impacts of BCs as a percentage of total impact are presented in Figure 9. As the figure shows, undercounter one-tank dishwashers have the greatest impacts within the sector and represent the major share of the total stock. The share of these appliances remains relatively constant, between 35% (for PM) and 41% for eutrophication and water. Hood-type dishwashers, representing 27% of the total stock, also account for a large share of the impacts, between 26% (for PAHs) and 30% for eutrophication and water. Undercounter water-change dishwashers have a very low share for all indicators (always below 4%) despite a share of 11% of the total stock. The low stock of utensil/pot dishwashers and their relatively low capacity explain the negligible share of this base case in the total impacts (less than 1%). Finally, heavy duty appliances (BC 5 and BC 6) represent together around 30-35% of the environmental impacts even if fewer appliances are used in comparison with other types.

🤴 Öko-Institut e.V.

Figure 9 Base cases' share of the environmental impacts of the stock in 2009

Figure 10 focuses on the shares of the electricity consumption. They are similar to other impacts as BC 2 represents 36% of the total electricity consumption of the professional dishwashers stock, BC 3 accounts for 27% of the total and BC 5 and 6 for 34% together. The

total electricity consumption of professional dishwashers is about 16.2 TWh which represents around 0.57% of the EU-27 total electricity consumption.¹¹

Figure 10 Base cases' share of the electricity consumption of the stock in 2009

No other estimations of the overall impacts of EU professional dishwashers were found in the literature. An American study¹² however estimated the baseline energy use (but other environmental impacts were not assessed). These results are presented in Table 22.

Table 22	Energy consumption of professional dishwashers in the USA, 2008 ¹³	
----------	---	--

Category	Primary Energy consumption (TBtu) ¹⁴	Primary Energy consumption (PJ)
Undercounter	5.2	5.5
Conveyor	115.0	121.9
Door type	21.9	23.2
Flight type	18.9	20.0
Total	161.0	170.7

¹¹ Source Eurostat: EU27 electricity consumption in 2007 = 244 million toe = 2 837 TWh.

¹² Navigant Consulting (2009), *Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances*, for US Department of Energy.

¹³ Navigant Consulting (2009), *Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances*, for US Department of Energy.

¹⁴ Conversion factor: 1 Btu = 1060 kJ

Figure 11 Professional Dishwashers Primary Energy Consumption by Washer Type, in the USA, 2008

These results are in accordance: while the EU-27 (with a population of around 500 million inhabitants and a GDP of \$ 16 447 259^{15}) has an annual primary energy consumption of 234.0 PJ for professional dishwashers, the US (with a population of 310 million inhabitants and a GDP of \$ 14 256 275^{15}), has an annual consumption of 170.7 PJ for the same sector.

However, important differences can be seen on Figure 11, as conveyor dishwashers are expected to represent 71% of the total consumption in the US, while only 36% in EU-27. Undercounter dishwashers also have a much smaller share in the US than in the EU (3% vs. 37%). This difference may come from the specificities of the market structure as it seems that the sales of conveyor-type dishwashers represent a more important share of the total sales in the US than in the EU-27.

5.3 Life Cycle Costs

Regarding the total consumer expenditure in 2009 related to the six BCs, about 36% of the total costs are due to electricity consumption, 8% to water consumption and 27% to detergent consumption while product prices represent 21% of this total. The distribution per base case is given in Figure 12 and details on consumer expenditure are presented in Table 23.

¹⁵ International Monetary Fund, 2009

Table 23	Total Annual Consumer expenditure in EU-27 in 2009
----------	--

Environmental Impact		Base case					
		2	3	4	5	6	TOLAI
EU-27 sales (in thousand units)	20	138.2	65.9	2.6	6.6	1.3	234.6
Share of the EU-27 sales	8.5%	58.9%	28.1%	1.1%	2.8%	0.6%	100%
Product Price (in million Euro)	64	484	310	27	99	59	1 042
Electricity (in million Euro)	36	800	456	20	283	215	1 811
Water (in million Euro)	14	163	120	5	56	40	398
Detergent (in million Euro)	54	571	423	17	178	116	1 358
Repair and maintenance costs (in million Euro)	21	195	125	11	38	21	410
Total (in million Euro)	189	2 212	1 434	80	654	451	5 020

Figure 12 Base cases' share of the total consumer expenditure in 2009

The contributions to the total consumer expenditure are slightly different from the ones to the environmental impacts. Total consumer expenditure in 2009 related to undercounter one-tank dishwashers represents 44% of the total. Hood-types are the next highest with 28% and third come conveyor-type appliances accounting for 13% (one-tank) and 9% (multi-tank) of the total consumer expenditure. Total consumer expenditure does not take into account possible benefits received for materials at disposal.

6 EU-27 total system impact

During operation, professional dishwashers produce heat which is transferred to the water first and partially to the dishes afterwards. This heat (and residual moisture) can then be transferred to the room if the machine has no specific heat recovery option implemented. The environmental impacts of this heat transfer can be positive as well as negative, depending on several parameters:

- The climate: If the room needs to be heated, the dishwasher will complement the heating system. On the contrary, if the room needs to be cooled (it is usually the case for kitchens with warm and humid atmosphere), operating a dishwasher will require additional energy consumption from the ventilation/air conditioning system. A dishwasher with a heat recovery system or a heat pump will reduce the energy consumption of the dishwasher itself on the one hand, and also spares the extra work needed from the ventilation system in comparison with a basic dishwasher on the other hand.
- The energy source of the dishwasher and of the heating system: electricity needs to be produced from a primary energy, generally with low efficiency. If the dishwasher only uses electricity as energy source, the central heating system will be much more efficient and heating the room indirectly thanks to the dishwasher will reduce the global efficiency of the heating process.

Due to huge differences between Member States and appliances, no global heat transfer can be estimated at EU level with reliability.

The infrastructure of the building where the dishwasher is installed has also an influence on the possible options to reduce the energy consumption of the system. The base cases are all considered with only cold water supply and 100% electric heating. However, the implementation of warm water supply (see Task 7) or the use of another energy source (e.g. gas which, however, is not very common for professional dishwashers) normally enable to reduce the use of primary energy (and lower many environmental impacts) even if it does not reduce the final energy needed at the level of the machine: the heat required and contained in the water remains the same.

7 Conclusions

The environmental impacts assessment carried out with the EcoReport tool for each base case shows that the use phase is by far the most impacting stage of the life cycle in terms of energy consumption, water consumption, greenhouse gases emissions and eutrophication. Therefore, the analysis of the improvement potential in Task 7 will mainly focus on technologies that reduce the electricity, water and detergent consumption during the use phase.

Because of their large amount of appliances in total stock, the undercounter one-tank dishwashers are responsible for about 40% of the overall impacts due to professional dishwashers in EU. They also represent 44% of the annual consumer expenditure as their range of price is very wide. Hood-type dishwashers and conveyor-type dishwashers also significantly contribute to the total environmental impacts and expenditure while undercounter water-change and utensil/pot dishwashers account for minor shares.

Task 6 will examine the improvement options of professional dishwashers considered as best available technologies, in an attempt to improve upon the base cases. Based on the life cycle analysis made in this task, these options mainly focus on the reduction of energy, water and detergent consumption of the dishwashers during the use phase.

8 Annex

8.1 Detailed bills of materials of the six base cases

Pos	MATERIALS Extraction & Production	Weight	Category	Material or Process	
nr	Description of component	in g	Click &select	select Category first !	
1	Stainless Steel	24560.0	3-Ferro	25-Stainless 18/8 coil	
2	Steel Sheet galvanized	403.0	3-Ferro	21-St sheet galv.	
3	Cast Iron	2303.0	3-Ferro	23-Cast iron	
4	Polypropylene (PP)	4980.0	1-BlkPlastics	4-PP	
5	Polyamid (PA)	399.0	2-TecPlastics	11-PA 6	
6	Polymethylmetacrylate (PMMA)	6.0	2-TecPlastics	13-PMMA	
7	Acrylonitrile Butadiene Styrene (ABS)	7510	1-BlkPlastics	10-ABS	
8	Plystyrene (PS)	512.0	1-BlkPlastics	5-PS	
9	Styropor expandable polystyrene (EPS)	40.0	1-BlkPlastics	6-EPS	
10	Polybutylene Terephthalate (PBT)	35.0			
11	Polyvinylchlorid (PVC)	403.0	1-BlkPlastics	8-PVC	
12	EPDM-rubber	524.0	1-BlkPlastics	1-LDPE	
13	POM	230.0	1-BlkPlastics	2-HDPE	
14	PE	187.0	1-BlkPlastics	2-HDPE	
15	Plastics others	268.0			
16	Aluminium	273.0	4-Non-ferro	26-AI sheet/extrusion	
17	Cu wire	1006.0	4-Non-ferro	29-Cu wire	
18	CuZn38 cast	23.0	4-Non-ferro	31-CuZn38 cast	
19	Chromium	710			
20	Bitumen	6089.0	7-Misc.	55-Bitumen	
21	Concrete	1263.0	7-Misc.	58-Concrete	
22	Cotton	452.0			
23	Ероху	609.0	2-TecPlastics	14-Ероху	
24	Wood	2034.0	7-Misc.	56-Cardboard	
25	others (Paper)	285.0	7-Misc.	57-Office paper	
26	Electronics (control)	448.0	6-⊟ectronics	98-controller board	
27	Packaging (EPS)	724.0	1-BlkPlastics	6-EPS	
28	Packaging (PE foil)	172.0	1-BlkPlastics	2-HDPE	
29	Packaging (Wood)	1011.0	7-Misc.	56-Cardboard	
30	Packaging (cardboard)	635.0	7-Misc.	56-Cardboard	

				u / · · · b
Pos	MATERIALS Extraction & Production	weight	Category	Material or Process
nr	Description of component	in g	Click &select	select Category first !
1	Stainless steel	49760.0	3-Ferro	25-Stainless 18/8 coil
2	Polypropylene (PP)	4565.0	1-BlkPlastics	4-PP
3	Polyamide (PA)	500.0	2-TecPlastics	11-PA 6
4	Ероху	1000.0	2-TecPlastics	14-Ероху
5	Acrylonitrile Butadiene Styrene (ABS)	70.0	1-BlkPlastics	10-ABS
6	Pumps (copper)	2500.0	4-Non-ferro	30-Cu tube/sheet
7	Pumps (stack of sheets)	2500.0	3-Ferro	22-St tube/profile
8	Pumps (stainless steel wave)	2250.0	3-Ferro	25-Stainless 18/8 coil
9	Pumps (AI)	2250.0	4-Non-ferro	26-AI sheet/extrusion
10	Cable (copper)	1100.0	4-Non-ferro	29-Cu wire
11	Cable sheath (PVC)	600.0	1-BlkPlastics	8-PVC
12	Cable sheath (silicone, EDPM)	300.0	1-BlkPlastics	1-LDPE
13	Electronics (control)	500.0	6-Electronics	98-controller board
14	Gaskets (EDPM)	2040.0	1-BlkPlastics	1-LDPE
15				
16	Packaging (polystyrene)	500.0	1-BlkPlastics	5-PS
17	Packaging (wood)	6000.0	7-Misc.	56-Cardboard
18	Packaging (cardboard)	2750.0	7-Misc.	56-Cardboard

	MATERIAL S Extraction & Production	Woight	Catagory	Material or Process	_
P o s nr	Description of component	in g	Click &select	select Category first !	
	• •	J			
1	Stainless steel	93090.0	3-Ferrous	25-Stainless 18/8 coil	
2	Polypropylene (PP)	4310.0	1-BlkPlastics	4-PP	
3	Polyamide (PA)	1000.0	2-TecPlastics	11-PA 6	
4	Ероху	800.0	2-TecPlastics	14-Ероху	
5	Acrylo nitrile Butadiene Styrene (ABS)	70.0	1-BlkPlastics	10-ABS	
6	Pumps (copper)	3000.0	4-Non-ferrous	30-Cu tube/sheet	
7	Pumps (stack of sheets)	3000.0	3-Ferrous	22-St tube/profile	
8	Pumps (stainless steel wave)	2500.0	3-Ferrous	25-Stainless 18/8 coil	
9	Pumps (AI)	3000.0	4-Non-ferrous	26-Al sheet/extrusion	
10	Cable (copper)	1700.0	4-Non-ferrous	29-Cu wire	
11	Cable sheath (PVC)	1000.0	1-BlkPlastics	8-PVC	
12	Cable sheath (silicone, EDPM)	500.0	1-BlkPlastics	1-LDPE	
13	Electronics (control)	600.0	6-Electronics	98-controller board	
14	Gaskets (EDPM)	3085.0	1-BlkPlastics	1-LDPE	
15					
16	Packaging (polystyrene)	500.0	1-BlkPlastics	5-PS	
17	Packaging (wood)	12250.0	7-Misc.	56-Cardboard	
18	Packaging (cardboard)	4750.0	7-Misc.	56-Cardboard	

	MATERIAL C Extraction & Decoduction	Mainht.	Cata	Material ex Dresses
Pos	MATERIALS EXTRACTION & Production	weight	Click Realist	waterial or Process
nr	Description of component	in g	Click &select	select Category first !
1	Stainless steel	165000.0	3-Ferrous	25-Stainless 18/8 coil
2	Polypropylene (PP)	3000.0	1-BlkPlastics	4-PP
3	Polyamide (PA)	4000.0	2-TecPlastics	11-PA 6
4	Ероху	0.0	2-TecPlastics	14-Ероху
5	Ethylene Propylene Dien M-class rubber (EPDM)	4000.0	1-BlkPlastics	1-LDPE
6	Acrylonitrile Butadiene Styrene (ABS)	0.0	1-BlkPlastics	10-ABS
7	Pumps (copper)	5000.0	4-Non-ferrous	30-Cu tube/sheet
8	Pumps (stack of sheets)	4000.0	3-Ferrous	22-St tube/profile
9	Pumps (stainless steel wave)	3000.0	3-Ferrous	25-Stainless 18/8 coil
10	Pumps (AI)	5000.0	4-Non-ferrous	26-Al sheet/extrusion
11	Cable (copper)	2400.0	4-Non-ferrous	29-Cu wire
12	Cable sheath (PVC)	1400.0	1-BlkPlastics	8-PVC
13	Cable sheath (silicone, EDPM)	1100.0	1-BlkPlastics	1-LDPE
14	Electronics (control)	2100.0	6-Electronics	98-controller board
15	Gaskets, etc. (EDPM)	6000.0	1-BlkPlastics	1-LDPE
16				
17	Packaging (polystyrene)	500.0	1-BlkPlastics	5-PS
18	Packaging (wood)	16000.0	7-Misc.	56-Cardboard
19	Packaging (cardboard)	3500.0	7-Misc.	56-Cardboard

	MATERIAL S Extraction & Production	Waight	Catagory	Material or Process	
Pos nr	Description of component	ing	Calegory	select Category first !	
1	Stainless steel	642250.0	3-Ferrous	25-Stainless 18/8 coil	
2	Polypropylene (PP)	55500.0	1-BlkPlastics	4-PP	
3	Polyamide (PA)	6140.0	2-TecPlastics	11-PA 6	
4	Polyvinyl chloride (PVC)	4600.0	1-BlkPlastics	8-PVC	
5	Polystyrene (PS)	4430.0	1-BlkPlastics	5-PS	
6	Acrylonitrile Butadiene Styrene (ABS)	5000.0	1-BlkPlastics	10-ABS	
7	Pumps (copper)	16825.0	4-Non-ferrous	30-Cu tube/sheet	
8	Pumps (stack of sheets)	15625.0	3-Ferrous	22-St tube/profile	
9	Pumps (stainless steel wave)	12335.0	3-Ferrous	25-Stainless 18/8 coil	
10	Pumps (AI)	17470.0	4-Non-ferrous	26-AI sheet/extrusion	
11	Condenser (AL)	4720.0	4-Non-ferrous	26-Al sheet/extrusion	
12	Condenser (Cu)	7080.0	4-Non-ferrous	30-Cu tube/sheet	
13	Ventilator, fan (AL)	17440.0	4-Non-ferrous	26-Al sheet/extrusion	
14	Ventilator, fan (Cu)	10160.0	4-Non-ferrous	30-Cu tube/sheet	
15	Drive motor (AL)	4000.0	4-Non-ferrous	26-AI sheet/extrusion	
16	Drive motor (Cu)	5000.0	4-Non-ferrous	30-Cu tube/sheet	
17	Cable (copper)	16300.0	4-Non-ferrous	29-Cu wire	
18	Cable sheath (PVC)	8640.0	1-BlkPlastics	8-PVC	
19	Cable sheath (silicone, EDPM)	5170.0	1-BlkPlastics	1-LDPE	
20	Electric contactor (copper)	10000.0	4-Non-ferrous	29-Cu wire	
21	Electronics (control)	9800.0	6-Electronics	98-controller board	
22	Gaskets (EDPM)	12800.0	1-BlkPlastics	1-LDPE	
23					
24	Packaging (polystyrene)	2940.0	1-BlkPlastics	5-PS	
25	Packaging (wood)	63500.0	7-Misc.	56-Cardboard	
26	Packaging (cardboard)	15500.0	7-Misc.	56-Cardboard	

			0-4	Matarial an Duana a	
Pos	MAIERIALS EXTRACTION & Production	weight	Category	waterial or Process	
nr	Description of component	in g	Click &select	select Category first !	
1	Stainless steel	980000.0	3-Ferrous	25-Stainless 18/8 coil	
2	Polypropylene (PP)	58000.0	1-BlkPlastics	4-PP	
3	Polyamide (PA)	18660.0	2-TecPlastics	11-PA 6	
4	Ероху	0.0	2-TecPlastics	14-Ероху	
5	Ethylene Propylene Dien M-class rubber (EPDM)	12000.0	1-BlkPlastics	1-LDPE	
6	Acrylonitrile Butadiene Styrene (ABS)	0.0	1-BlkPlastics	10-ABS	
7	Pumps (copper)	39020.0	4-Non-ferrous	30-Cu tube/sheet	
8	Pumps (stack of sheets)	37070.0	3-Ferrous	22-St tube/profile	
9	Pumps (stainless steel wave)	25370.0	3-Ferrous	25-Stainless 18/8 coil	
10	Pumps (AI)	44880.0	4-Non-ferrous	26-AI sheet/extrusion	
11	Cable (copper)	19800.0	4-Non-ferrous	29-Cu wire	
12	Cable sheath (PVC)	11440.0	1-BlkPlastics	8-PVC	
13	Cable sheath (silicone, EDPM)	8360.0	1-BlkPlastics	1-LDPE	
14	Electronics (control)	15400.0	6-Electronics	98-controller board	
15	Gaskets, etc. (EDPM)	15000.0	1-BlkPlastics	1-LDPE	
16					
17	Packaging (polystyrene)	5290.0	1-BlkPlastics	5-PS	
18	Packaging (wood)	141180.0	7-Misc.	56-Cardboard	
19	Packaging (cardboard)	33530.0	7-Misc.	56-Cardboard	

8.2 Stakeholder feedback to draft versions of Task 5

Please note that the feedback refers to prior draft versions of Task 5 report; thus the indicated numerations of chapters, tables, figures or pages might have changed.

Feedback		Comment
JRC IPTS		
	In general the Draft Task 5 of the Professional Dishwashers Report makes a good impression. It is very well structured, transparent and clearly presented in line with the MEEUP methodology.	Thank you for your valuable comments.
	We consider that significant improvements on the environmental assessment of the base cases are feasible if the study could reach a greater level of detail (i.e. it could be more precise, and/or could contain a longer components/substance list in the EcoReport in order to capture the differences among the base cases).	
	Moreover, we would like to emphasise a significant aspect in the calculation of the overall environmental performance of the EU product group stock in which correction factors are used. These corrections result in higher absolute values. Neither the decision of using correction factors is substantiated nor is the determination of them evidence-based. These values are highly relevant when implementing measures are considered. In particular, following the consultant approach, products which have average environmental performance seem compared to the stock as environmental sound solutions. This calculation should be made and presented in a different form ensuring transparency and being evidence based.	See reply below
	In Draft Task 5, the environmental impact results of the six product base cases as elaborated in the EcoReport tool do not seem to have significant differences in terms of predominance of certain elements (see Section 5.2.7 Conclusions, page 33). The analysis ends up focusing mainly on the energy and consumables during the use phase. We consider that such results indicate that the analysis needs to go into greater detail so that the product's ecodesign differences can be captured. At this point it should also be emphasised that such outcomes unveil restrictions of the EcoReport tool.	Indeed limitations of the EcoReport (especially for the material database) are estimated to be partly responsible for this similarity between the six base cases analysis. However, the base cases are not fundamentally different from a technical point of view and the fact that the hot spots are the same does not seem unexpected for the project team.
	The assumptions made for the product group end-of-life phase with incineration and recycling rates of 100 % for plastics and metals respectively are considered overestimated. A rate of landfill disposal should be presented.	Considered in revision, see reply below
	In the computation of the overall environmental assessment of the product group, EU stock correction factors regarding the performance of new and older products are used. The use of these correction factors results in higher overall environmental impact values of the total product group. The relevance of these values directly affects the calculation of the environmental savings potential when implementing measures are determined and allows appliances with average environmental performances to seem like environmentally-sound solutions. This calculation should be clarified and substantiated.	See reply below

Feedback	(Comment
Section 5.1.2 page 8	Specific materials of product components were not available in the database of the EcoReport tool. Therefore, a few materials were approximated by using other materials of the database whereas others were ignored. In order to substantiate the approximations made, it is considered supportive to provide and illustrate the similarities of the life cycle environmental performance of these material pairs. This could be possible by using available LCA databases and respective LCIA methods. Moreover, the environmental performance of the materials that were not approximated (in this case, it was chromium, cotton and polybutylene terephtalate (PBT)) should also be provided and compared with the environmental performance of other components investigated. This is necessary in order to further substantiate any decision regarding their exclusion from the investigation. The components' share of the total weight of the dishwasher should not be the only reason substantiating their exclusion. If high environmental relevance of these components is confirmed, then a dataset could be added as new entry in the database of the EcoReport	Preliminary environmental analyses have been added to the report to complement such assumptions. Besides, the project team would like to add that it is estimated more relevant (when the material is not of outstanding importance in the BOM) to make assumptions on closest materials available in the EcoReport database, rather than add "homemade" impacts for a new category in EcoReport (problem of consistency between different
Section 5.1.4.1	The number of kilometres travelled for maintenance and repair of one machine over its product lifetime is time-dependent. Thus, the assumption made of 1000 km should be transformed in x km/year in order to better time dependant real life conditions.	Considered in revision due to new stakeholder input at final stakeholder meeting
Section 5.1.5	After the product use, the metal parts of professional dishwashers are assumed to have recycling rates of 100 %. Respectively the incineration rates of the plastic parts were also assumed to reach 100 %. Both values are not considered realistic. These rates need refinement which would additionally take into account the geographical variation among the Member States (please see also the comments above).	The text has been corrected: the intended meaning of the sentence was that 100% of the recovered metals and plastics are recycled or incinerated. Post WEEE and post ROHS conditions are assumed within MEEuP and the assumed default value of non-recovered products in a post-WEEE scenario is 5%. In particular, the standard recycling rate for metals and TV glass is set at 95%, assumption under which the recycling benefits of metals (defined with MEEuP) are valid. The same rate will be considered for the recovery of all types of material (5% of the BOM goes to landfill).
Section 5.1.5	Professional dishwashers with pumps for heat recovery are not considered within the base cases with the justification that they are BAT appliances. These kinds of dishwashers are indeed considered to be BAT; nevertheless, this does not necessarily exclude them from being taken into account in the base case. The base case is defined as a conscious abstraction of reality which should represent an average product in the market. Therefore, as long as dishwashers with heat recovery pumps have a significant market share, then they should be included in the base cases.	Description of the market according to this option was tentatively made in draft Task 2 but the lack of data (according to manufacturers, such records do not exist) has led the team to consider the base case as a basic product, with the option of heat pump being entirely BAT. Reflection of the market during the course of Task 6

Feedbacl	(Comment
		has supported this assumption: heat pumps are usually not yet applied in smaller DW categories due to lower profitability. With high- throughput machines of categories 5 and 6, the profitability is better, but still pumps for heat recovery are usually offered only as optional, not as standard equipment. Therefore, they do not have a significant market share and it is justified that they are not included into the base cases.
Section 5.1.6 (Point 3)	According to the consultant, the professional dishwasher's environmental efficiency differs largely when new products and older ones are compared. As the environmental assessment is based on 'base cases currently sold in the market' the consultant proposes the use of correction factors in order to avoid underestimation of the overall environmental assessment of the product group stock. This decision needs to be justified in more detail. Moreover, if these correction factors are considered necessary then their determination should rely on scientific evidence and not on simply assumptions and/or estimations of stakeholders. The graphical presentation of the lines of environmental performance of the product stock over time (past and future) as calculated with and without correction would clarify the importance of this issue (e.g. on the y axis the environmental performance values and on the x axis the years). We would like to draw attention to the fact that with the implementation of these correction factors, the overall environmental performance of the product stock seems to be higher compared with the calculation without correction. This could directly affect the phase of implementing measures proposal because with the current calculation, significant environmental savings can also be allocated to products which are of average performance. This takes place because the environmental performance is compared with the performance of the product group stock which is 'corrected' thus with higher absolute values.	This is not an initiative from the team but a required input of the EcoReport tool: Overall Improvement Ratio (Stock vs. New), Use Phase. It is indeed expected to take into account the fact that in the current stock, the products are less efficient than the currently sold products. For all product categories, this input was estimated from data presented in Task 2, as specified in the text and reminded in the table.
Section 5.1.4.1	Reference should be provided on the values given in Table 9 'Overall improvements ratios for all base cases'.	Added in revision.
Section 5.2.7	In the conclusion chapter, a discussion on the similarities and differences between domestic and professional dishwashers should be added.	Added in revision.
Section 5.4.2	It is considered necessary to identify the environmental hot spots of each base case and their respective contribution to the overall life cycle product performance. For instance one hot spot is electricity consumption which is responsible for base case 1 for x % of eutrophication potential and y % of VOC, etc. Furthermore, another hot spot is material A as it contributes respectively to y % of the total overall value of heavy metals, etc. That way it would be easier to identify the focus areas of BAT and implementing measures.	The project team believes that this is what is currently presented in sections 3.1 to 3.6 3.7 summarises these hot spots.

Feedback		Comment	
Hobart			
Section 2.4.4	Travelling effort for maintenance and repair: 1000 km over the product lifetime seems to be not applicable for all six categories. The effort for maintenance and repair is more or less related to the complexity of the particular machine. There is also a relation based on the usage of a particular machine (i.e. cycles per day, operating hours per day, care handling etc.). Thus, lower category machines need less maintenance and repair than upper categories and consequently accordant kilometres. Note: Data for different categories are not available.	Considered in revision due to new stakeholder input at final stakeholder meeting	
Granuldi	sk		
5.1.4.2	The water consumption in pre-soak and pre-wash prior to the washing in the machine is not included in Table 5. For Base Case 4 Utensil/Pot washers, this consumption can't be neglected since it's much higher than the water consumption in the machine (5 to 8 times higher). For utensil- and pot-washers using granule technology this consumption will be avoided! Granule technology = A mechanical cleaning process where plastic granules and water are blasting the pots and pans clean without using pre- soaking and scrubbing. Water consumption in pre-soak/-wash process MUST be included at least in BC4. As 30 % of the total detergent consumption is used in the pre-wash process it's necessary to include this in the total detergent consumption. For utensil- and pot-washers using granule technology this consumption will be avoided as no pre-soak or pre-wash is needed. Granule technology = A mechanical cleaning process where plastic granules and water are blasting the pots and pans clean without using pre-soaking and scrubbing.	Please refer to the discussion in Task 6 (BAT) for this point: In order to give incentive to reduce the overall water consumption of dishwashing, the inclusion of the whole process from dirty to clean (including the pre-soak and pre-cleaning phase) would be rather desirable for all dishwasher categories, with special focus on utensil / pot dishwashers. However, the water consumption for pre- cleaning is strongly dependent on the specific user behaviour and cannot be influenced by the technology of the dishwashing machine itself. Further, there is no	
5.1.4.1	Detergent consumption in pre-soak/-wash process MUST be included at least in BC4. Hot water is used for pre-soak and pre-wash. The energy for heating this water is not included either! For utensil- and pot-washers using granule technology this consumption will be avoided as no pre-soak or pre-wash is needed. Granule technology = A mechanical cleaning process where plastic granules and water are blasting the pots and pans clean without using pre-soaking and scrubbing	method and thus no reliable data to record the average consumption through external pre-cleaning of the wash ware for the different dishwasher categories. Finally, as we already excluded all manually process steps outside the dishwashing machines from the scope of this study as stated in Task 1, we didn't include the consumption of the pre-soak / pre-cleaning phase into the calculation of base cases at all.	