

European Commission (DG ENER)

Preparatory Studies for Ecodesign Requirements of EuPs (III) [Contract N° TREN/D3/91-2007-Lot 22-SI2.521661]

Lot 22

Domestic and commercial ovens (electric, gas, microwave), including when incorporated in cookers

Task 5: Definition of Base-case

Final Version – August 2011

In association with

Bio Intelligence Service - Scaling sustainable development Industrial Ecology - Nutritional Health Bio Intelligence Service S.A.S - bio@biois.com 20-22 Villa Deshayes - 75014 Paris - France Tél. +33 (0)1 53 90 11 80 - Fax. +33 (0)1 56 53 99 90

Project Team

BIO Intelligence Service

Mr. Shailendra Mudgal

- Mr. Benoît Tinetti
- Mr. Eric Hoa
- Mr. Guillaume Audard

ERA Technology Ltd.

Dr. Chris Robertson

- Dr. Paul Goodman
- Dr. Stephen Pitman

Disclaimer:

The project team does not accept any liability for any direct or indirect damage resulting from the use of this report or its content.

This report contains the results of research by the authors and is not to be perceived as the opinion of the European Commission.

Contents

5.	Task 5 – Definition of Base-case5
5.1.	Product-specific inputs5
5.1.1.	Definition of Base-cases6
5.1.2.	Domestic appliances9
5.1.3.	Commercial appliances used in restaurants
5.1.4.	Commercial appliances used in Bakeries
5.2.	Base-case Environmental Impact Assessment24
5.2.1.	Domestic appliances
5.2.2.	Commercial appliances used in restaurants
5.2.3.	Commercial appliances used in bakeries
5.3.	Base-case Life Cycle Costs
5.3.1.	Domestic appliances48
5.3.2.	Commercial appliances used in restaurants
5.3.1.	Commercial appliances used in bakeries
5.4.	EU Totals
5.4.1.	Domestic appliances50
5.4.2.	Commercial appliances used in restaurant53
5.4.3.	Commercial appliances used in bakeries56
5.4.4.	Impacts of domestic and commercial appliances at the EU level
5.5.	EU-27 Total System Impact60
5.6.	Conclusions

3

This page is intentionally left blank.

5. TASK 5 – DEFINITION OF BASE-CASE

The purpose of this task is:

- Selection of the average EU representative model or construction of average EU model characteristics from several important product subcategories in the product group
- Definition of Standard Base-case, i.e. the environmental impact, functionality and Life Cycle Costs for a reference year measured according to harmonised test standards (that would also be used for compliance testing).
- Definition of Real-life Base-case, i.e. the (estimated) environmental impact, functionality and Life Cycle Cost in real-life for a reference year with actual consumer behaviour and ambient conditions.

The Base-case is a conscious abstraction of reality, necessary for practical reasons (budget, time). Having said that, the question if this abstraction leads to inadmissible conclusions for certain market segments will be addressed in the impact and sensitivity analysis.

The description of the Base-cases is the synthesis of the results of Tasks 1 to 4. Most of the environmental and life cycle cost analysis are built on these Base-cases throughout the rest of the study and it serves as the point-of-reference for Task 6 (technical analysis of BAT), Task 7 (improvement potential), and Task 8 (policy analysis).

The environmental and cost impact analysis is carried out using the EcoReport tool, which is part of the MEEuP methodology, required by the European Commission for undertaking preparatory studies for the Ecodesign Directive. The results of the environmental impact assessment presents the total primary energy consumed over the product life cycle. 1 kWh of electricity (final energy) is converted into 10.5 MJ (primary energy). The conversion factor is therefore 2.92, and not 2.5 as described in Annex II of the Energy Service Directive. This factor being used for the environmental impact assessment does not imply that the same factor will be used in future legislation.

5.1. PRODUCT-SPECIFIC INPUTS

This section describes the technical analysis of typical domestic and commercial ovens which exist on the EU market. This data will cover the production phase, the distribution phase, the use phase and the end-of-life phase. Bill of materials (BOM) and resource consumption during product life are some of the important parameters to be

looked at¹. This will be used as the general input for the Base-case environmental impact assessment, in section 5.2.

5.1.1. **DEFINITION OF BASE-CASES**

The objective of this section is to define and describe the Base-cases, based on the previous tasks and the information recovered from the stakeholders and the literature review. The Base-cases are "a conscious abstraction of reality" and have to cover the wide variety of existing products in order to be as representative of the European market as possible. Therefore, the number of Base-cases is optimised to be small enough to enable a simplified analysis of the market but large enough to deal with the technological spectrum of products.

The appliances covered by Lot 22 are very diverse in how they are designed and how they are used. The definition of Base-cases had to take into account this diversity, but the MEEuP methodology requires the number of Base-cases to be low. As a result, some appliances that are under the scope of this study will not be covered by the Base-cases. This is particularly the case for some designs of commercial ovens, which energy consumption at the EU level was considered too low to be included as Base-case. The following paragraphs detail the choice of the Base-cases presented in Table 5-1.

Average product in stock

In DG ENER Lot 22 study, the Base-case is defined as the average product in stock although the MEEuP methodology recommends the use of the average product sold. Indeed, for products with long lifetime, such as ovens, using the average product in stock is more relevant as it better illustrates the current consumption levels and gives a more reliable indication of potential savings.

Therefore, the "Overall Improvement ratio" parameter, available in EcoReport, was set at 1. For clarification, the average product sold will be presented in Task 7, together with the improvement options.

Commercial sector

Ovens used in the commercial sector are different from those found in the domestic sector, in terms of technology as well as user behaviour. Different designs and functionalities are available to meet specific needs of the commercial sector. The sales volumes of some types of appliances, such as rack ovens, are low, and even if there is an improvement potential in energy efficiency, the savings at the EU level would be low.

Concerning microwave ovens (MWO), which are used in many foodservice outlets, little information was available. The technical differences between domestic and commercial MWO were considered small enough not to merit two Base-cases. The outcomes of this study regarding domestic microwave ovens will be applicable to commercial microwave ovens.

¹ Necessary input into EcoReport

As a result, only combi-steam ovens were included as Base-cases for restaurant ovens. In fact, they represent most of the commercial ovens sold on the EU market in 2007 (see Task 2).

Separation between appliances using different energy sources

Appliances of the same category using different energy sources will be treated in separate Base-cases.

At the present time, the standard test procedures to measure the energy consumption of electric and gas ovens are different. Although both of them are based on the principle of heating a brick, the test protocols are not identical. Therefore, it is currently not possible to make a rigorous comparison of the results from the two standards, even by converting final energy consumptions into primary energy consumptions.

A Base-case for each energy source will result in assessing the improvement potential and pinpointing the Best Available Technology separately for each Base-case. However, a separation between energy sources at this stage of the study will have not influence in any way the recommendations that will be made in Task 8, or on the implementing measures that will be adopted by the European Commission. The aim of this preparatory study is to provide the European Commission the necessary knowledge to set up implementing measures. Having implementing measures covering all appliances whatever their energy source or specific implementing measures for each type of appliance is a political decision that will be made by the European Commission later in the legislative process.

Synthesis

Although the MEEuP methodology foresees one or two Base-cases (BCs) to cover the entire EU market for the products considered in each preparatory study, ten BCs emerged for ovens. Such a high number of BCs is necessary to appropriately cover the broad range of technical specifications and functionalities of ovens. Table 5-1 gives an overview of the ten Base-cases, for which characteristics were discussed and agreed with relevant stakeholders.

Table 5-1: Description of the Base-cases

Base-case	Configuration Capacity		Self- cleaning	Total power
Domestic ovens			·	
BC1 – Domestic electric oven	Built-in independent	54 L*	None	3,570 W
BC2 – Domestic gas oven	Free-standing dependant (used in cooker)	58 L*	None	10,500 W**
BC3 – Domestic microwave oven	Free-standing independent	18 L	None	1,150 W
Restaurant ovens				
BC4 – Commercial electric combi-steamer	Free-standing	10 GN 1/1	Chemical	19,000 W
BC5 - Commercial gas combi-steamer	Free-standing	10 GN 1/1	Chemical	NG : 22,000 W Elec.: 800 W
Bakery ovens			BSA:	Baking surface area
BC6 – Commercial in- store convection oven	Free-standing	BSA: 1m²	None	11,500 W
BC7 – Commercial electric deck oven	Free-standing	BSA: 4.5 m²	None	62,000 W
BC8 – Commercial gas deck oven	Free-standing	BSA: 4.5 m²	None	NG: 80,000 W Elec.: 2,000 W
BC9 – Commercial electric rack oven	Free-standing	BSA: 7.5 m ²	None	70,000 W
BC10 – Commercial gas rack oven	Free-standing	BSA: 7.5 m²	None	NG: 85,000 W Elec: 6,400 W

* In line with Figures 4-6 and 4-7, presented in Task 4.

** BC2 is a cooker. Thus the total power includes the hobs as well as the oven. This power is however only indicative and the energy consumption considered in the environmental impact assessment will only take into account the oven's energy consumption.

5.1.2. **Domestic appliances**

5.1.2.1. INPUTS IN THE PRODUCTION PHASE

Production phase data related to typical ovens consists of the Bill of Materials (BOM) and the sheet metal scrap generated during the manufacturing phase. The BOMs have already been presented in Task 4.

Material equivalents

Because the EcoReport was initially designed as a simple and generic tool for all Ecodesign preparatory studies, its database does not include some materials found in domestic ovens. The list of those materials is presented in Table 5-2. The equivalences were mainly based on assumptions made in previous Ecodesign preparatory studies.

Table 5-2: Material found in domestic appliances covered by Lot 22 not included in EcoReport

Material ²	Detail	ВС	Weight	Percentage of the total weight	Most similar material available
Tempered	Door's glass in domestic	BC1	4.1 kg	13.4%	54-Glass for
glass	ovens	BC2	3.8 kg	11.1%	lamps
Borosilicate glass	Turntable of domestic microwave ovens	BC3	0.65 kg	4.8%	54-Glass for lamps
Enamel	Coating used in convection	BC1	< 0.2 kg	< 0.6%	54-Glass for
coating	ovens	BC2	< 0.2 kg	< 0.6%	lamps
Incoloy steel alloy	nickel-iron-chromium alloy with additions of molybdenum, copper and titanium used in heating resistances	BC1	1.2 kg	3.9%	25 – Stainless 18/8
PTFE and PPS		BC3	0.025 kg	0.2%	11-PA6
PPO and POM		BC3	0.04 kg	0.3%	11-PA6
Silicone	Used in joints	BC1	0.05 kg	0.2%	16 – Flex PUR
Silcone		BC2	0.05 kg	0.1%	TO - HEAT ON
Frigolit	Bulk plastic used in packaging for microwave ovens.	BC3	0.215 kg	1.6%	6-EPS

² PTFE: Polytetrafluoroethylene

PPS: Polyphenylene sulfide

PPO: Polyphenylene oxide

POM: Polyoxymethylene (polyacetal)

Weight distribution

In Table 5-3, the weight distribution according to material categories is presented. It is important to notice that Base-case 2 is a gas cooker, and thus its BOM refers to the complete appliance, including not only the oven but also the hob.

Base-case	Weight	1 Bulk Plastics	2 Tech. Plastics	3 Ferro	4 Non- ferro	5 Coating	6 Electron ics	7 Misc. ³	Total
Base-case 1: Domestic	in g	194	500	24,375	235	0	125	5,430	30,858
electric oven	in %	1%	2%	79%	1%	0%	0%	18%	
Base-case 2: Domestic	in g	50	424	35,857	2,938	0	0	10,798	50,067
gas oven	in %	0%	1%	72%	6%	0%	0%	22%	
Base-case 3: Domestic	in g	1,077	41	6,978	2,340	216	533	2,361	13,546
microwave oven	in %	8%	0%	52%	17%	2%	4%	17%	

Table 5-3: Composition of the three domestic Base-cases	h	/ category	of materials
Table 3-3. Composition of the three domestic base-cases	, N	y categoi y	Ulinatenais

The complete BOMs should include more coatings. However, the enamelled coatings used in BC1 and BC2 are not available in EcoReport. Coatings in EcoReport are epoxybased, and thus are inadequate to model enamelled coatings. Consequently, these coatings were not considered.

As all domestic Base-cases have a high proportion of ferrous materials in their BOM, environmental impacts of the production and manufacturing phases are expected to be mainly due to this category of materials. BC3 has also a high proportion of materials under the category 7-Misc, mainly cardboard (for the packaging) and glassy materials. However, EcoReport provides only a few glassy materials (18-E-glass fiber and 54-Glass for lamps). Thus, the approximations which had to be made to fill the BOMs could bias the environmental analysis.

Regarding the sheet metal scrap percentage generated during the manufacturing phase, a rate of 5% has been assumed for all Base-cases.

5.1.2.2. INPUTS IN THE DISTRIBUTION PHASE

Input data related to the distribution phase of the product to be used in the MEEuP EcoReport calculations are based on the volume of the packaged product. These volumes, based on the findings of task 4, are exposed in Table 5-4 below.

³ Including the material "Glass for lamps"

Base-case	Volume of packaged product (in m ³)
BC1: Domestic electric oven	0.292
BC2: Domestic gas oven	0.439
BC3: Domestic microwave oven	0.092

Table 5-4: Volume of packaged product for domestic Base-cases

BC2 has the biggest package volume, because this is a cooker, and not just the oven.

Two other pieces of information are required in this section:

- Is it an ICT or Consumer Electronics product <15 kg: No
- Is it an installed appliance:
 No

These parameters are used in EcoReport to modify the impacts of the distribution phase. Consumer electronics and installed appliances have a specific distribution phase. None of the three domestic base cases are consumer electronics or installed appliances.

5.1.2.3. INPUTS IN THE USE PHASE

Energy consumption

The energy consumption during the use phase is expected to be a major contributor to the environmental impacts of an oven. The annual energy consumption is required as an input in EcoReport, as well as the product lifetime which was evaluated in the market analysis (see Task 2). These inputs will also be used to calculate the Life Cycle Costs (LCC) of the Base-cases.

	0	n-mode	Standby mode			
Base-case	Consumption per cycle (kWh)	Number of cycle per year	Duration of a cycle	Consumption per hour (Wh)	Number of hours per year	
BC1: Domestic electric oven	1.1^{4}	110	55 min	2	8660	
BC2: Domestic gas oven	1.67	111	55 min	0	0	
BC3: Domestic microwave oven	0.056	1200	2 min 36 s	2.2	8708	

Table 5-5: Energy consumption for each domestic Base-case

The energy consumption per cycle and the number of cycle per year was taken from Table 3-11 in the Task 3 report. The electricity consumption for defining the energy label is based on the brick test, but with a margin of 10% + 0.04 kWh. Such a tolerance could result in a difference between the actual performance and the energy label

⁴ This value represents the Base-case 1, i.e. the average product in stock. Please note that in Task 7, the average product that is currently sold (identified as Option 0) is introduced with a 0.84 kWh/cycle energy consumption.

performance of up to 15%. This would imply that an oven's energy consumption could be 15% higher than the value determined by the wet brick test. Moreover, the value on the label is based on the most efficient functionality of an oven, which is not always used in practice.

The calculation of the impacts of gas consumption in EcoReport was intended to be applied to building heating systems. Consequently, an "Avg. Heat Power Output" is required. To input the gas consumption in the tool, "69-Gas, atmospheric" was selected as fuel, with an efficiency of 86.0%. The "heat output" parameter was calculated to have an energy input of 1.67 kWh with an efficiency of 86.0%, which is 1.44 kWh.

The standby consumption was estimated at 3W for the domestic electric oven and 2.2W for the microwave oven. In accordance with Regulation 1275/2008/EC, the equipment sold in the EU after December 2009 should meet the following requirements:

- Power consumption in off mode must be 1 Watt or less;
- Power consumption in standby mode which allows reactivation must be 1 Watt or less;
- Power consumption in standby mode which allows reactivation and displays information (such as a clock) must be 2 Watts or less.

Ovens are covered by this regulation. However, Base-cases are representative of the appliances already in stock in the EU. Thus, the electricity consumption in standby-mode is higher than these requirements. Further, for the gas oven Base-case, the standby electric consumption is not relevant as this BC (including in a cooker) does not have a timer.

Number of kilometres over the product life for maintenance and repair

For all Base-cases, the number of kilometres travelled for maintenance and repair for one oven is given in Table 5-6.

Base-case	Number of kilometres over the product life						
BC1: Domestic electric oven	15						
BC2: Domestic gas oven	15						
BC3: Domestic microwave oven	0						

Table 5-6: Number of kilometre over the product life for maintenance and repair of domestic products

Users were considered to replace their microwave oven when it is no longer working, so there is no maintenance on this type of appliances, and thus no travel over the product lifetime. For ovens, as no stakeholder was able to provide this information, the

number of kilometres travelled used in previous preparatory studies concerning household appliances⁵ was used.

5.1.2.4. INPUTS IN THE END-OF-LIFE PHASE

It is assumed that an important share of the ovens' materials is recycled and reused.

Domestic electric and gas ovens

2% by weight of BC1 and BC2 was assumed not to be recovered (go to landfill) during the end-of-life phase.

Indeed, in principle, almost all materials in the electric and gas ovens' composition are recovered and follow one of the following options:

- Metals are 100% recycled;
- Paper, cardboard, and plastics are 100% incinerated or thermally recycled (benefits of energy recovery);
- Hazardous waste consists only of electronic components, which are considered easy to disassemble and are in limited quantity (around 1% of the total weight).

Regarding the plastic fraction, the following end-of-life management options were estimated for all Base-cases, based on stakeholders' feedback:

- Re-use, closed loop recycling: 15 %
- Material (or mechanical) recycling: 83 %
- Thermal recycling: 2 %.

Domestic microwave oven

For BC3, stakeholders estimated that 15% to 20% was going to landfill. 18% was the figure used in EcoReport. Also, they considered plastics are treated as follows at end-of-life:

- Re-use, closed loop recycling: 95 %
- Material (or mechanical) recycling: 2 %
- Thermal recycling: 3 %.

5.1.2.5. ECONOMIC INPUTS

Economic data used for the calculations of the Life Cycle Costs (LCC) were elaborated in Task 2 (product lifetime, product prices, energy rates, etc.). Table 5-7 presents the lifetimes, sales and stock figures (which are used to assess environmental and economic impacts at EU level) and product prices for all three domestic Base-cases. It is considered that consumers are not charged with any installation or disposal costs.

⁵ See Preparatory Study for Eco-design Requirements of EuPs – Lot 13: Domestic refrigerators & Freezers: www.ecocold-domestic.org/index.php?option=com_docman&task=doc_download&gid=122&Itemid=40

Base-case	Product Lifetime (in years)	Sales for the year 2007 (units)	Stock for the year 2008 (units)	Product price (in €)	Maintenance costs (in €)
BC1: Domestic electric oven	19	8,990,000	145,000,000	493	0
BC2: Domestic gas oven	19	2,180,000	50,000,000	330	0
BC3: Domestic microwave oven	8	13,870,000	125,000,000	117	0

Table 5-7: EcoReport economic inputs of the domestic Base-cases

In addition, Table 5-8 presents the energy rates used for each Base-case.

Base-case	Electricity rate (€/kWh)	Natural gas rate (€/GJ)
BC1: Domestic electric oven	0.1658	
BC2: Domestic gas oven		16.21
BC3: Domestic microwave oven	0.1658	

Table 5-8: Energy rates, by Base-case

Further, the discount rate (4%) was provided by the EC and is the same for all Basecases. The overall improvement ratios (market over stock) were assumed to be 1. For each Base-case, this improvement ratio indicates the difference of global efficiency during the use phase between the new sales and the current stock.

14

5.1.3. COMMERCIAL APPLIANCES USED IN RESTAURANTS

5.1.3.1. INPUTS IN THE PRODUCTION PHASE

Material equivalent

Table 5-9 presents the material used in EcoReport to replace some of the material found in restaurant ovens that were not available.

Ecoreport								
Material	Detail	BC	Weight	Percentage of the total weight	Most similar material available			
Silicate	Door's glass in commercial	BC4	9 kg	6.6%	54-Glass for			
glass	ovens	BC5	9 kg	5.8%	lamps			
Glass wool	Insulation of commercial ovens	BC4 BC5	8 kg 8 kg	5.9% 5.2%	7-Misc (as in ENER Lots 1 and 2)			
Incoloy steel alloy	Nickel-iron-chromium alloy with additions of molybdenum, copper and titanium used in heating resistances	BC4 BC5	9 kg 26 kg	6.6% 16.8%	25- Stainless 18/8			
Silicone polymer	Used in door seal of domestic convection ovens.	BC4 BC5	2.4 kg 2.4 kg	1.8% 1.5%	16-Flex PUR			

Table 5-9: Material found in restaurant ovens covered by Lot 22 not included in EcoReport⁶

Weight distribution

Table 5-10: Composition of the two combi-steamer Base-cases, by category of

materials

Base-case	Weight	1 Bulk Plastics	2 Tech. Plastics	3 Ferro	4 Non- ferro	5 Coating	6 Electroni cs	7 Misc.	Total
Base-case 4: Commercial	in g	800	8,200	104,000	3,900	0	1,600	17,000	135,500
eletric combi- steamer	in %	1%	6%	77%	3%	0%	1%	13%	
Base-case 5: Commercial	in g	800	8,200	121,000	5,900	0	1,600	9,000	146,500
gas combi- steamer	in %	1%	6%	83%	4%	0%	1%	6%	

⁶ The correspondence between materials was mainly based on the hypothesis made for previous Ecodesign Preparatory studies.

5.1.3.2. INPUTS IN THE DISTRIBUTION PHASE

Input data related to the distribution phase of the product to be used in the MEEuP EcoReport calculations are based on the volume of the packaged product. These volumes are presented in Table 5-11 below.

Table 5-11: Volume of packaged product for combi-steamer Base-cases

Base-case	Volume of packaged product (in m ³)
BC4: Commercial electric combi-steamer	1.1
BC5: Commercial gas combi-steamer	1.1

Two other pieces of information are required in this section. These parameters will be common for all commercial Base-cases:

- Is it an ICT or Consumer Electronics product <15 kg: No
- Is it an installed appliance: **No**

5.1.3.3. INPUTS IN THE USE PHASE

Energy consumption

The energy consumption during the use phase is expected to be a major contributor to the environmental impacts of an oven. The annual energy consumption is required as an input in EcoReport, as well as the product lifetime which was evaluated in the market analysis (see Task 2). These inputs will also be used to calculate the Life Cycle Costs (LCC) of the Base-cases.

	BC4: Commercial electric combi- steamer	BC5: Commercial gas combi- steamer	
On-mode			
Electricity consumption per cycle (kWh)	4.2	0.4	
Gas consumption per cycle (kWh)		5.4	
Number of cycles per year	1872	1872	
Duration of a cycle (minutes)	40	40	
Standby mode			
Electricity consumption per hour	1.5	0.6	
Gas consumption per hour		1.9	
Number of hours in standby	936	936	

Table 5-12: Energy consumption	for the combi-steamer Base-cases
--------------------------------	----------------------------------

16

Water consumption

Commercial combi-steamers consume water to produce steam during the cooking process. Most combi-steamers also have an automatic cleaning functionality, but it is difficult for manufacturers to quantify the use frequency of this feature. Therefore, it was assumed that BC4 and BC5 were consuming 10 litres of water per cooking cycle, which represents 18.72 cubic meters per year. The consumption due to the cleaning process was neglected.

Number of kilometres over the product life

For all combi-steamer Base-cases, the number of kilometres travelled for maintenance and repair is given in Table 5-13. This data was collected among stakeholders using a questionnaire.

Base-case	Number of kilometres over the product life
BC4: Commercial electric combi- steamer	1600
BC5: Commercial gas combi-steamer	1600

Table 5-13: Number of kilometre over the product life for combi-steamer Base-cases

5.1.3.4. INPUTS IN THE END-OF-LIFE PHASE

It is assumed that an important share of the ovens' materials is recycled and reused.

For BC4 and BC5, respectively 0.8% and 0.7% of their weight was assumed not to be recovered (go to landfill) during the end-of-life phase.

Indeed, in principle, almost all materials in the electric and gas ovens' composition are recovered and follow one of the following options:

- Metals are 100% recycled;
- Paper, cardboard, and plastics are 100% incinerated or thermally recycled (benefits of energy recovery);
- Hazardous waste consists only of electronic components, which are considered easy to disassemble and are in limited quantity (around 1% of the total weight).

Regarding the plastic fraction, the following end-of-life management options were estimated for all Base-cases, based on stakeholders' feedback:

- Re-use, closed loop recycling: 0 %
- Material (or mechanical) recycling: 5 %
- Thermal recycling: 95 %.

5.1.3.5. ECONOMIC INPUTS

Economic data used for the calculations of the Life Cycle Costs (LCC) were elaborated in Task 2 (product lifetime and product prices, energy rates, water and consumables rates). The product prices were based on stakeholders' feedback and brochures.

Table 5-14 presents the lifetimes, sales and stock figures (which are used to assess environmental and economic impacts at EU level) and product prices for the commercial Base-cases. The installation and the disposal costs were considered to be null, as the machines are rarely sent to landfill but taken care of by recyclers.

	BC4: Commercial electric combi-steamer	BC5: Commercial gas combi-steamer
Product life (in years)	10	10
Sales 2007 (units)	41,000	9,200
Stock 2007 (units)	400,000	80,000
Product price (€)	11,900	13,200
Installation costs (€)	200	300
Maintenance costs (€)	700	900

Table 5-14: EcoReport economic inputs of the combi-steamer Base-cases

Table 5-15 presents the energy and water rates, for each combi-steamer Base-case.

Table 5-15: Energy and water rate,	by combi-steamer Base-case
------------------------------------	----------------------------

Base-case	Electricity rate (€/kWh)	Natural gas rate (€/GJ)	Water rate (€/m³)
BC4: Commercial electric combi-steamer	0.1554		2.64
BC5: Commercial gas combi-steamer	0.1554	14.81	2.64

Further, the discount rate (4%) was provided by the EC and is the same for all Basecases. The overall improvement ratios (market over stock) were assumed to be 1. For each Base-case, this improvement ratio indicates the difference of global efficiency during the use phase between the new sales and the current stock.

5.1.4. COMMERCIAL APPLIANCES USED IN BAKERIES

5.1.4.1. INPUTS IN THE PRODUCTION PHASE

Bakery ovens are mainly made out of ferrous metals. A big share of the weight is also due to insulation material (counted in 7-Misc.). For Base-cases 7 and 8, decks are also an important share of the total weight.

The gas deck oven is much heavier than the electric version. The equipment specific to gas can explain part of the additional weight. It is also likely that more work has been done by manufacturers to reduce the weight of electric ovens compared to gas ovens.

Base-case	Weight	1 Bulk Plastics	2 Tech. Plastics	3 Ferro	4 Non- ferro	5 Coating	6 Electronics	7 Misc.	Total
Base-case 6: Bakery in-	In g	0	60	78,200	0	0	800	30,000	109,060
store convection oven	In %	0%	0%	72%	0%	0%	1%	28%	100%
Base-case 7:	in g	5,000	10,300	1,080,800	9,500	0	1,800	677,000	1,784,400
Electric deck oven	in %	0%	1%	61%	1%	0%	0%	38%	100%
Base-case 8:	in g	6,500	6,500	2,014,800	5,500	0	1,000	746,000	2,780,300
Gas deck oven	in %	0%	0%	72%	0%	0%	0%	27%	100%
Base-case 9: Electric rack	in g	4,000	4,130	855,815	8,980	0	2,000	145,000	1,019,925
oven	in %	0%	0%	84%	1%	0.0%	0%	14%	100.0%
Base-case 10:	in g	4,000	4,130	880,315	8,980	0	2,000	145,000	1,044,425
Gas rack oven	in %	0%	0%	84%	1%	0%	0%	14%	100.0%

Table 5-16: Composition of the bakery Base-cases, by category of materials

5.1.4.2. INPUTS IN THE DISTRIBUTION PHASE

Table 5-17: Volume of packed product for bakery Base-cases

Base-case	Volume of packaged product (in m ³)
BC6: Bakery in-store convection oven	0.5
BC7: Electric deck oven	14.9
BC8: Gas deck oven	14.9
BC9: Electric rack oven	7.0
BC10: Gas rack oven	7.0

Two other pieces of information are required in this section. These parameters will be common for all commercial Base-cases:

- Is it an ICT or Consumer Electronics product <15 kg: No
- Is it an installed appliance: Yes

5.1.4.3. INPUTS IN THE USE PHASE

Energy and water consumption

The energy consumption during the use phase is expected to be a major contributor to the environmental impacts of an oven. The annual energy consumption is required as an input in EcoReport, as well as the product lifetime which was evaluated in the

market analysis (see Task 2). These inputs will also be used to calculate the Life Cycle Costs (LCC) of the Base-cases.

	BC6: Bakery in-store convection oven	BC7: Electric deck oven	BC8: Gas deck oven
On-mode			
Electricity consumption per cycle (kWh)	2.5	25.2	0.8
Gas consumption per cycle (kWh)	-	-	32.8
Water consumption per cycle (litres)	0.5	6	6
Number of cycles per year	5000	1872	1872
Duration of a cycle (minutes)	30	60	60

Table 5-18: Energy consumption for the bakery Base-cases (BC6 to BC8)

Table 5-19: Energy consumption for the bakery Base-cases (BC9 and BC10)

	BC9: Electric rack oven	BC10: Gas rack oven
On-mode	oven	oven
Electricity consumption per hour (kWh)	25.5	2
Gas consumption per hour (kWh)		28
Water consumption per hour (litres)	5	5
Number of hours per year	2700	2700
Standby mode		
Electricity consumption per hour (kWh)	7.5	1.7
Gas consumption per hour (kWh)		9.15
Number of hours per year in standby	300	300

Water consumption

The water consumption of in-store convection ovens is around 0.5 litre per cycle, which represents 2.5 m^3 of water per year.

Deck ovens are consuming water to produce the steam necessary to bake bread. The consumption per hour of baking will be estimated to 6 litres, which represents 11.2 m^3 of water per year.

For rack ovens, it was assumed that they were consuming 1.65 litres of water per cycle. With 3 cycles per hour, and 2700 hours, this represents an annual water consumption of 13.5 m^3 .

Number of kilometres over the product life

For all bakery Base-cases, the number of kilometres travelled for maintenance and repair is given in Table 5-13. This data was collected among stakeholders using a questionnaire.

Base-case	Number of kilometres over the product life
BC6: Bakery in-store convection oven	1,600
BC7: Electric deck oven	2,000
BC8: Gas deck oven	2,500
BC9: Electric rack oven	2,500
BC10: Gas rack oven	3,000

Table 5-20: Number of kilometre over the product life for bakery Base-cases

Information was provided by different stakeholders for in-store convection ovens, deck ovens and rack ovens. They are estimated assuming an oven is serviced once a year all along its lifetime.

5.1.4.4. INPUTS IN THE END-OF-LIFE PHASE

It is assumed that an important share of the ovens' materials is recycled and reused. Indeed, in principle, almost all materials in the electric and gas ovens' composition are recovered and follow one of the following options:

- Metals are 100% recycled;
- Paper, cardboard, and plastics are 100% incinerated or thermally recycled (benefits of energy recovery);
- Hazardous waste consists only of electronic components, which are considered easy to disassemble and are in limited quantity (around 1% of the total weight).

Regarding the plastic fraction, the end-of-life management options were estimated for all Base-cases, based on stakeholders' feedback, and are presented in Table 5-21:

	BC6: Bakery in-store convection oven	BC7, BC8, BC9 and BC10
Product	-	
Fraction of the product which is not recovered	2%	1%
PWB easy to disassemble	YES	YES
Plastics		
Re-use, closed-loop recycling	1%	0%
Material (or mechanical) recycling	9%	5%
Thermal recycling	90%	95%

Table 5-21: End-of-life management options for bakery Base-cases

5.1.4.5. ECONOMIC INPUTS

Economic data used for the calculations of the Life Cycle Costs (LCC) were elaborated in Task 2 (product lifetime and product prices, energy rates, water and consumables rates). The product prices were based on stakeholders' feedback and brochures.

Table 5-22 presents the lifetimes, sales and stock figures (which are used to assess environmental and economic impacts at EU level) and product prices for the bakery Base-cases. The installation and the disposal costs were considered to be null, as the machines are rarely sent to landfill but taken care of by recyclers.

	BC6: Bakery in- store convection oven	BC7: Electric deck oven	BC8: Gas deck oven	BC9: Electric rack oven	BC10: Gas rack oven
Product life (in years)	8	15	15	10	10
Sales 2007 (units)	10,625	4,500	1,900	3,000	4,500
Stock 2007 (units)	85,000	53,000	43,000	30,000	45,000
Product price (€)	10,000	35,000	35,000	15,000	15,000
Installation costs (€)	400	Included in purchase price	Included in purchase price	1,800	2,000
Maintenance	2,500	6,000	8,000	3,650	5,475

Table 5-22: EcoReport economic inputs of the commercial Base-cases

22

	BC6: Bakery in- store convection oven	BC7: Electric deck oven	BC8: Gas deck oven	BC9: Electric rack oven	BC10: Gas rack oven
costs (€)					

Table 5-25 presents the energy rate, for each bakery Base-case. End-of-life costs or benefits were neglected. Indeed, some ovens are sold on the second-end market, while others are taken care of by specialised companies for recycling.

Base-case	Electricity rate (€/kWh)	Natural gas rate (€/GJ)
BC6: Bakery in-store convection oven	0.1554	
BC7: Electric deck oven	0.1554	
BC8: Gas deck oven	0.1554	14.81
BC9: Electric rack oven	0.1554	
BC10: Gas rack oven	0.1554	14.81

Table 5-23: Energy and water rate, by commercial Base-case

Further, the discount rate (4%) was provided by the EC and is the same for all Basecases. The overall improvement ratios (market over stock) were assumed to be 1. For each Base-case, this improvement ratio indicates the difference of global efficiency during the use phase between the new sales and the current stock.

5.2. BASE-CASE ENVIRONMENTAL IMPACT ASSESSMENT

The aim of this subtask is to assess the environmental impacts of each Base-case following the MEEuP (EcoReport Unit Indicators) for each life cycle stage:

- Raw Materials Use and Manufacturing (Production phase);
- Distribution;
- Use;
- End-of-Life.

The Base-case environmental impact assessment will lead to an identification of basic technological design parameters being of outstanding environmental relevancy⁷. These parameters will be listed as they will serve as an important input to the identification of ecodesign options.

The assessment results are tracked back to the main contributing components, materials and features of the domestic and commercial ovens.

5.2.1. **Domestic appliances**

5.2.1.1. BASE-CASE 1: DOMESTIC ELECTRIC OVEN

Table 5-24 shows the environmental impacts of a domestic electric oven over its whole life cycle. The total primary energy consumption for the whole life cycle of the Base-case 1 is 31.0 GJ, of which 29.7 GJ comes from the electricity consumption (equivalent to 2.83 MWh final energy).

	Life Cycle phases>		PR	ODUCTIO	N	DISTRI-	USE	END	-OF-LIFE	*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	970	250	1220	448	32826	48	35	12	34506
9	of which, electricity (in primary MJ)	MJ	229	149	378	1	32782	0	3	-3	33158
10	Water (process)	ltr	246	2	248	0	2188	0	2	-2	2434
11	Water (cooling)	ltr	179	69	248	0	87410	0	15	-15	87643
12	Waste, non-haz./ landfill	g	36475	884	37359	242	38378	759	10	749	76728
13	Waste, hazardous/ incinerated	g	88	0	88	5	756	14	2	12	862
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	73	14	87	28	1434	4	1	3	1551
15	Ozone Depletion, emissions	mg R-11 eq.				negligil	ole				
16	Acidification, emissions	g SO2 eq.	350	60	410	84	8447	8	2	6	8947
17	Volatile Organic Compounds (VOC)	g	4	0	4	6	13	0	0	0	23
18	Persistent Organic Pollutants (POP)	ng i-Teq	473	8	481	1	220	5	0	5	707

Table 5-24: Life Cycle Impact (per unit) of Base-case 1

⁷ As far as the MEEuP EcoReport allows the identification of such indicators.

	Life Cycle phases>		PRODUCTION			DISTRI-	USE	END-OF-LIFE*		*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
19	Heavy Metals	mg Nieq.	278	18	296	12	573	14	0	14	895
	PAHs	mg Nieq.	19	0	19	16	73	0	0	0	107
20	Particulate Matter (PM, dust)	g	64	9	73	999	313	77	0	76	1461
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	238	0	238	0	214	4	0	4	456
22	Eutrophication	g PO4	7	0	7	0	1	0	0	0	8
	Persistent Organic Pollutants (POP)	ng i-Teq				negligit	ole				

Figure 5-1 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:

- **Material acquisition** is predominant in the total environmental impact for the following categories :
 - Waste, non-hazardous / landfill: 47.5% (mainly due to the galvanised steel used for the body)
 - Persistent Organic Pollutants (POP) to the air: 66.9% (mainly due to the galvanized steel used for the casing)
 - Heavy metals emissions to water: 52.3% (mainly due to the stainless steel used for the heating elements)
 - Eutrophication: 84.2% (mainly due to the stainless steel used for the heating elements)

and contributes for the categories:

- Heavy metals emissions to the air: 31.1% (mainly due to the stainless steel used for the heating elements)
- Manufacturing is not impacting any of the categories (less than 2.0%)
- **Distribution** is dominating in the case of Particulate matter to the air, with 68.3% and contributes to Volatile Organic Compounds (VOC) emissions to the air, with 26.1%.⁸
- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 95.1%
 - Electricity: 98.9%
 - Water (process): 89.9%
 - Waste, hazardous / incinerated: 87.8%
 - Greenhouse gases: 92.4%
 - Acidification (emissions to air): 94.4%
 - Volatile Organic Compounds (VOC): 55.4%
 - Heavy metals emissions to the air: 64.0%

⁸ The high contribution of the distribution phase can be explained by the assumption related to transport in trucks from the retailer's central warehouse to the shop. The EcoReport tool does not allow specifying means of transport ant distances between the production place of the oven and retailer's central warehouse; only the volume of the product is taken into consideration to assess environmental impacts of the transport. Nevertheless, according to the MEEuP methodology (section 5.3.6, page 96), a mix of means of transport (trucking, rail, sear freight and air freight) with assumptions on distances is used for all Basecases. This assumption could be considered as disadvantageous for appliances mainly produced in Europe.

• PAHs (emissions to the air): 68.0%

and contributes in the case of:

- Waste, non-hazardous /landfill: 50.0%
- Persistent Organic Pollutants (POP): 31.1%
- Heavy metals emissions to water: 46.9%
- **End-of-life** is not contributing to more than 5.2% of the total environmental impacts.

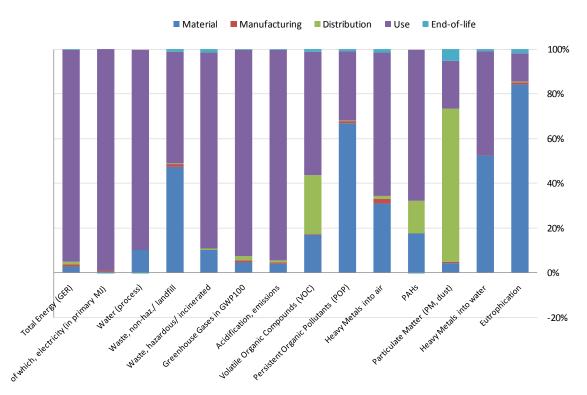


Figure 5-1: Distribution of environmental impacts of BC 1 per life cycle phase

5.2.1.2. BASE-CASE 2: DOMESTIC GAS OVEN

Table 5-25 shows the environmental impacts of a domestic gas oven over its whole life cycle. The total primary energy consumption for the whole life cycle of the Base-case 2 is 15.2 GJ, of which 254 MJ comes from the electricity consumption (equivalent to 24.2 kWh final energy).

	Table 3-23. Ene cycle impact (per unit) of base-case 2													
	Life Cycle phases>		PRC	DUCTIO	N	DISTRI-	USE	END-OF-LIFE*			TOTAL			
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total				
	Other Resources & Waste debet							credit						
8	Total Energy (GER)	MJ	1358	300	1659	647	13591	72	24	48	15945			
	of which, electricity (in primary MJ)	MJ	189	179	368	1	4	0	2	-2	371			
10	Water (process)	ltr	225	3	228	0	2	0	1	-1	229			
11	Water (cooling)	ltr	95	82	177	0	2	0	10	-10	169			
12	Waste, non-haz./ landfill	g	57542	1064	58606	339	586	1229	7	1222	60753			
13	Waste, hazardous/ incinerated	g	10	0	10	7	0	10	1	8	26			

Table 5-25.	Life Cycle	Impact (po	r unit) of	Base-case 2
Table 5-25:	LITE CVCIE	Impact (pe	r unit) of	Base-case Z

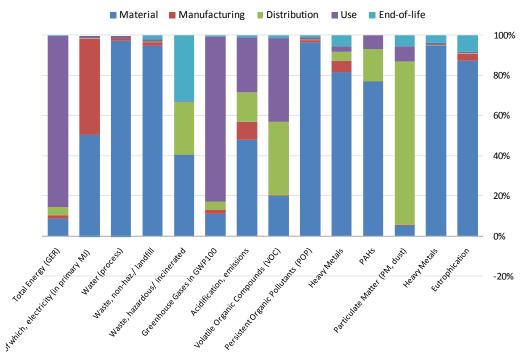
Emissions (Air)

14	Greenhouse Gases in GWP100	kg CO2 eq.	102	17	119	40	752	5	1	5	916
15	Ozone Depletion, emissions	mg R- 11 eq.				negligi	ble				
16	Acidification, emissions	g SO2 eq.	395	72	468	120	225	11	1	10	823
17	Volatile Organic Compounds (VOC)	g	5	0	5	9	10	0	0	0	25
18	Persistent Organic Pollutants (POP)	ng i- Teq	785	9	794	2	8	8	0	8	812
19	Heavy Metals	mg Ni eq.	313	22	335	17	11	21	0	21	384
	PAHs	mg Ni eq.	105	0	105	22	9	0	0	0	136
20	Particulate Matter (PM, dust)	g	93	11	105	1501	137	104	0	104	1847
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	142	0	142	1	1	6	0	6	150
22	Eutrophication	a PO4	3	0	3	0	0	0	0	0	4

		119/20					1				
22	Eutrophication	g PO4	3	0	3	0	0	0	0	0	4
	Persistent Organic Pollutants (POP)	ng i- Teq				negligi	ble				

Figure 5-2 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

- **Material acquisition** is predominant in the total environmental impact for the following categories :
 - Electricity consumption: 51.0% (mainly due to the steel used for the casing and the glass used for the door)
 - Water (process): 98.4% (mainly due to the glass used for the door)
 - Waste, non-hazardous /landfill: 94.7% (mainly due to the steel used for the casing)
 - Persistent Organic Pollutants (POP): 96.6% (mainly due to the steel used for the casing)
 - Heavy metals emissions to the air: 81.5% (mainly due to the steel used for the casing and the brass used in elements in contact with gas)
 - PAHs (emissions to the air): 77.1% (mainly due to the aluminium used for the door handle)
 - Heavy metals emissions to water: 94.9% (mainly due to the steel used for the casing)
 - \circ $\;$ Eutrophication: 87.3% (due to most metals and tec. plastics)
 - and contributes for the categories:
 - Waste, hazardous / incinerated: 40.4% (mainly due to PA-6)
 - Acidification, emissions: 48.0% (due to most metals)
- **Manufacturing** is the phase where 48.2% of the electricity is consumed, but the overall energy consumption of the manufacturing phase is only 1.9% of the total energy consumption.
- **Distribution** is not dominant for the category:
 - Particulate Matter (PM, dust): 81.3%


and contributes to:

- Waste, hazardous / incinerated: 26.2%
- Volatile Organic Compounds (VOC) emissions to the air: 36.6%

- **The use phase** impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 85.2%
 - o Greenhouse gases: 82.2%
 - and contributes in the case of:
 - Acidification, emissions: 27.4%
 - Volatile Organic Compounds (VOC): 41.8%
- End-of-life is contributing to the category:
 - Waste, hazardous / incinerated: 32.8% (this was not the case for BC1 as the majority of this impact came from the electricity consumption during the use phase. For gas ovens, the use phase is less significant. Therefore, in relative terms, the share of the end-of-life phase is greater even if in absolute terms the impact from this stage is quite similar for both Base-cases (12g for BC1 and 26g for BC2)

It is important to notice that this oven has no electric component and thus no standby energy consumption. Including a 3W standby consumption like for Base-case 1 would increase the Total Energy consumption to 20.4 GJ (of which 5.4 GJ electricity), which is still more than 30% lower than the total energy consumption of Base-case 1.

Figure 5-2: Distribution of environmental impacts of BC 2 per life cycle phase

5.2.1.3. BASE-CASE 3: DOMESTIC MICROWAVE OVEN

Table 5-26 shows the environmental impacts of a domestic microwave oven over its whole life cycle. The total primary energy consumption for the whole life cycle of the Base-case 2 is 13.3 GJ, of which 12.0 GJ comes from the electricity consumption (equivalent to 1.14 MWh final energy).

	Life Cycle phases>		PI	RODUCTIO	N	DISTRI-	USE	EN	D-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Wa	ste						debet	credit		
8	Total Energy (GER)	MJ	1118	187	1305	176	7267	182	74	107	8855
9	of which, electricity (in primary MJ)	MJ	280	99	379	0	7258	0	16	-16	7622
10	Water (process)	ltr	328	3	331	0	487	0	13	-13	805
11	Water (cooling)	ltr	274	52	325	0	19347	0	34	-34	19639
12	Waste, non-haz./ landfill	g	52840	591	53431	112	8945	2993	51	2942	65429
13	Waste, hazardous/ incinerated	g	241	1	242	2	170	117	14	103	516
	Emissions (Air) Greenhouse Gases in	kg CO2	68	11	79	12	317	14	3	11	419
14	GWP100	eq.			-		-		-		_
15	Ozone Depletion, emissions	mg R-11 eq.				negligibl					
16	Acidification, emissions	g SO2 eq.	816	48	864	35	1877	28	12	16	2791
17	Volatile Organic Compounds (VOC)	g	4	1	4	2	3	1	0	1	10
18	Persistent Organic Pollutants (POP)	ng i-Teq	231	4	235	1	50	21	0	20	306
19	Heavy Metals	mg Ni eq.	249	10	258	6	127	52	1	51	442
	PAHs	mg Ni eq.	89	0	89	7	15	0	1	-1	110
20	Particulate Matter (PM, dust)	g	48	9	57	315	40	260	1	259	671
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	193	0	193	0	49	15	6	9	251
22	Eutrophication	g PO4	6	0	6	0	0	1	0	1	7
23	Persistent Organic Pollutants (POP)	ng i-Teq				negligib	le		!		

Table 5-26: Life Cycle Impact (per unit) of Base-case 3

Figure 5-3 exposes the contribution of each life cycle phase to each impact. Several observations can be made from this analysis:

- **Material acquisition** is predominant in the total environmental impact for the following categories :
 - Waste, non-hazardous /landfill: 80.8% (mainly due to the copper used in the transformer)
 - Persistent Organic Pollutants (POP): 75.4% (mainly due to the steel used for casing and the ferrite in the transformer)
 - Heavy metals emissions to the air: 56.2% (mainly due to the copper and the ferrite used in the transformer)
 - PAHs (emissions to the air): 80.9% (mainly due to the capacitor)
 - Heavy metals emissions to water: 76.9% (mainly due to the electronic components)
 - Eutrophication: 83.6% (mainly due to the electronic components)

and contributes for the categories:

- Water (process) : 40.7% (mainly due to the electronic components)
- Waste, hazardous / incinerated: 46.7% (mainly due to the electronic components)
- $\circ\;$ Acidification, emissions: 29.2% (mainly due to the copper used in the transformer)

- Volatile Organic Compounds (VOC): 36.8% (mainly due to the electronic components)
- Manufacturing is not significantly contributing to any category (less than 5.9%)
- **Distribution** is not dominant in any category but contributes to:
 - Particulate Matter (PM, dust): 46.9%
 - Volatile Organic Compounds (VOC): 20.6%
- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 82.1%
 - Electricity: 95.2%
 - Water (process): 60.5%
 - Greenhouse gases: 75.7%
 - Acidification (emissions to air): 67.2%
 - and contributes in the case of:
 - Waste, hazardous / incinerated: 32.9%
 - Volatile Organic Compounds (VOC): 29.1%
 - Persistent Organic Pollutants (POP): 16.3%
 - Heavy metals emissions to the air: 28.7%
 - Heavy metals emissions to water: 19.4%
- End-of-life is contributing to the category:
 - Particulate Matter (PM, dust): 38.6% (due to the fact that 18% of the product goes to landfill)

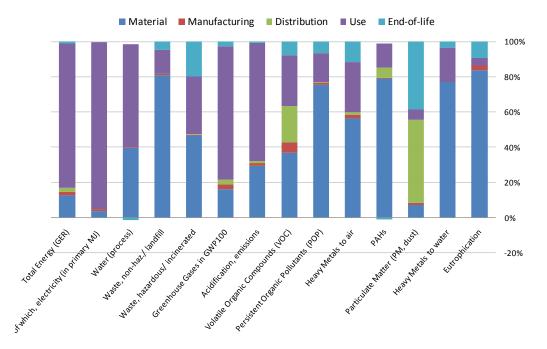


Figure 5-3: Distribution of environmental impacts of BC 3 per life cycle phase

30

5.2.1.4. CONCLUSIONS

The contribution of each life cycle phase to the indicators is widely varying depending on the Base-case. However, some trends common to all domestic Base-cases can be highlighted. The use phase is by far, and as expected, the main contributor to the energy consumption and greenhouse gases emissions. Non-hazardous waste is mainly produced during the material acquisition phase, which is also the most impacting phase regarding persistent organic pollutants emissions to the air and eutrophication. Particulate matter is emitted mainly during the distribution phase, and the end-of-life is not dominating any category.

The energy consumption of BC2 is significantly lower than BC1's one. However, the two Base-cases offer different functionalities. BC2 is a basic model, with no electronic component, where BC1 is programmable and consume electricity in standby mode, due to the timer. BC2's use phase has a significant contribution to 4 categories, whereas 11 categories are impacted by the use phase of BC1 and BC3.

5.2.2. **COMMERCIAL APPLIANCES USED IN RESTAURANTS**

5.2.2.1. BASE-CASE 4: COMMERCIAL ELECTRIC COMBI-STEAMER

Table 5-27 shows the environmental impacts of a commercial electric combi-steamer over its whole life cycle. The total primary energy consumption for the whole life cycle of Base-case 4 is 989.4 GJ, of which 976.4 GJ comes from the electricity consumption (equivalent to 93.0 MWh of final energy).

		PRODUCTION		ON	DISTRI-	USE	END-OF-LIFE*		TOTAL	
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
Other Resources & Waste							debet	credit		
Total Energy (GER)	MJ	9236	2018	11253	1273	976937	652	740	-88	989376
of which, electricity (in primary MJ)	MJ	2164	1203	3367	3	973006	0	2	-2	976374
Water (process)	ltr	8877	18	8895	0	252154	0	1	-1	261048
Water (cooling)	ltr	3098	555	3654	0	2594629	0	9	-9	2598273
Waste, non-haz./ landfill	g	167944	7068	175012	550	1129858	1330	6	1324	1306744
Waste, hazardous/ incinerated	g	1239	0	1239	11	22433	8550	1	8549	32232
	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./ landfill	Total Energy (GER) MJ of which, electricity (in primary MJ) MJ Water (process) Itr Water (cooling) Itr Waste, non-haz./ landfill g	Total Energy (GER)MJ9236of which, electricity (in primary MJ)MJ2164Water (process)Itr8877Water (cooling)Itr3098Waste, non-haz./ landfillg167944	Total Energy (GER)MJ92362018of which, electricity (in primary MJ)MJ21641203Water (process)Itr887718Water (cooling)Itr3098555Waste, non-haz./ landfillg1679447068	Total Energy (GER) MJ 9236 2018 11253 of which, electricity (in primary MJ) MJ 2164 1203 3367 Water (process) Itr 8877 18 8895 Water (cooling) Itr 3098 555 3654 Waste, non-haz./ landfill g 167944 7068 175012	Total Energy (GER) MJ 9236 2018 11253 1273 of which, electricity (in primary MJ) MJ 2164 1203 3367 3 Water (process) Itr 8877 18 8895 0 Water (cooling) Itr 3098 555 3654 0 Waste, non-haz./ landfill g 167944 7068 175012 550	Total Energy (GER) MJ 9236 2018 11253 1273 976937 of which, electricity (in primary MJ) MJ 2164 1203 3367 3 973006 Water (process) Itr 8877 18 8895 0 252154 Water (cooling) Itr 3098 555 3654 0 2594629 Waste, non-haz./ landfill g 167944 7068 175012 550 1129858	Total Energy (GER) MJ 9236 2018 11253 1273 976937 652 of which, electricity (in primary MJ) MJ 2164 1203 3367 3 973006 0 Water (process) Itr 8877 18 8895 0 252154 0 Water (cooling) Itr 3098 555 3654 0 2594629 0 Waste, non-haz./ landfill g 167944 7068 175012 550 1129858 1330	Total Energy (GER) MJ 9236 2018 11253 1273 976937 652 740 of which, electricity (in primary MJ) MJ 2164 1203 3367 3 973006 0 2 Water (process) Itr 8877 18 8895 0 252154 0 1 Water (cooling) Itr 3098 555 3654 0 2594629 0 9 Waste, non-haz./ landfill g 167944 7068 175012 550 1129858 1330 6	Total Energy (GER) MJ 9236 2018 11253 1273 976937 652 740 -88 of which, electricity (in primary MJ MJ 2164 1203 3367 3 973006 0 2 -2 Water (process) Itr 8877 18 8895 0 252154 0 1 -1 Water (cooling) Itr 3098 555 3654 0 2594629 0 9 -9 Waste, non-haz./ landfill g 167944 7068 175012 550 1129858 1330 6 1324

Table 5-27: Life Cycle Impact (per unit) of Base-case 4

	(
Emissions	(AII)

14	Greenhouse Gases in GWP100	kg CO2 eq.	811	113	924	76	42767	49	54	-5	43761
15	Ozone Depletion, emissions	mg R-11 eq.		negligible							
16	Acidification, emissions	g SO2 eq.	7398	486	7885	232	250917	97	68	29	259063
17	Volatile Organic Compounds (VOC)	g	25	1	26	23	429	2	1	1	478
18	Persistent Organic Pollutants (POP)	ng i-Teq	1013	56	1069	3	6388	9	0	9	7470
19	Heavy Metals	mg Ni eq.	15116	132	15248	28	17677	176	0	176	33129
	PAHs	mg Ni eq.	229	0	229	51	2751	0	0	0	3031
20	Particulate Matter (PM, dust)	g	916	75	991	3760	19473	834	1	833	25058

Emissions (Water)

1	21	Heavy Metals	mg Hg/20	9585	0	9585	1	6369	55	0	55	16010
1	22	Eutrophication	g PO4	267	1	267	0	33	3	0	3	303
	23	Persistent Organic Pollutants (POP)	ng i-Teq	negligible								

Figure 5-4 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:

- **Material acquisition** is predominant in the total environmental impact for the following categories :
 - $\circ~$ Heavy metals emissions to water: 59.9% (mainly due to the stainless steel)
 - Eutrophication: 87.8% (mainly due to the stainless steel)

and contributes for the categories:

- Heavy metals emissions to the air: 45.6% (mainly due to the stainless steel used for the heating elements)
- Manufacturing is not impacting any of the categories (less than 0.8%)

- Distribution contributes to Particulate matter (PM, dust) emissions to the air, with 15.0%.
- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 98.7%
 - Electricity: 99.7%
 - Water (process): 96.6% 0
 - Waste, non-hazardous /landfill: 86.4% 0
 - Waste, hazardous / incinerated: 69.6%
 - Greenhouse gases: 97.7%
 - Acidification (emissions to air): 96.8%
 - Volatile Organic Compounds (VOC): 89.7%
 - Persistent Organic Pollutants (POP): 85.5%
 - Heavy metals emissions to the air: 53.3%
 - PAHs (emissions to the air): 90.7%
 - Particulate matter (PM, dust) emissions to the air: 77.7%

and contributes in the case of:

- Heavy metals emissions to water: 39.8% 0
- End-of-life contributes to Waste, hazardous / incinerated, with 26.5%, due to the fact the 8.5 kg of plastics which are incinerated.

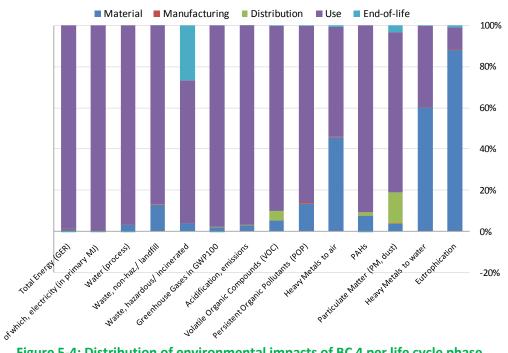


Figure 5-4: Distribution of environmental impacts of BC 4 per life cycle phase

5.2.2.2. BASE-CASE 5: COMMERCIAL GAS COMBI-STEAMER

Table 5-28 shows the environmental impacts of a commercial gas combi-steamer over its whole life cycle. The total energy consumption for the whole life cycle of Base-case 5 is 611.0 GJ, of which 141.3 GJ of primary energy comes from the electricity consumption (equivalent to 13.5 MWh of final energy).

	Life Cycle phases>		PRODUCTION		DISTRI-	USE	END-OF-LIFE*			TOTAL	
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste debet							credit			
8	Total Energy (GER)	MJ	10401	2298	12699	1273	597219	652	806	-154	611038
9	of which, electricity (in primary MJ)	MJ	2329	1370	3698	3	137629	0	2	-2	141329
10	Water (process)	ltr	10165	20	10185	0	196475	0	1	-1	206659
11	Water (cooling)	ltr	3242	632	3874	0	366951	0	9	-9	370816
12	Waste, non-haz./ landfill	g	186444	8068	194512	550	161477	1327	6	1321	357860
13	Waste, hazardous/ incinerated	g	1239	0	1239	11	3183	8550	1	8549	12982
	Emissions (Air) Greenhouse Gases in	kg CO2	923	128	1052	76	31504	49	59	-10	32622
14	GWP100	eq.									
15	Ozone Depletion, emissions	mg R-11 eq.			-		igible				
16	Acidification, emissions	g SO2 eq.	8382	554	8936	232	43154	97	74	23	52345
17	Volatile Organic Compounds (VOC)	g	27	1	28	23	446	2	1	1	498
18	Persistent Organic Pollutants (POP)	ng i-Teq	1211	65	1277	3	915	9	0	9	2204
19	Heavy Metals	mg Ni eq.	17639	153	17792	28	3371	176	0	176	21367
	PAHs	mg Ni eq.	265	0	265	51	1118	0	0	0	1434
20	Particulate Matter (PM, dust)	g	1059	85	1144	3760	15008	834	1	833	20745
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	11066	0	11066	1	998	55	0	55	12119
22	Eutrophication	g PO4	306	1	307	0	7	3	0	3	318

Table 5-28: Life cycle Impact (per unit) of Base-case 5

Figure 5-5 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:

- **Material acquisition** is predominant in the total environmental impact for the following categories :
 - Waste, non-hazardous /landfill: 52.1%
 - Persistent Organic Pollutants (POP): 54.9% (mainly due to stainless steel)
 - Heavy metals emissions to the air: 82.5% (mainly due to stainless steel)
 - Heavy metals emissions to water: 91.3% (mainly due to stainless steel)
 - Eutrophication: 96.4% (mainly due to stainless steel)

and contributes for the categories:

- Acidification (emissions to air): 16.0%
- o PAHs (emissions to the air): 18.5%
- Manufacturing is not impacting any of the categories (less than 3.0%)
- **Distribution** contributes to Particulate matter (PM, dust) emissions to the air, with 18.1%.

- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 97.7%
 - Electricity: 97.4% 0
 - 0 Water (process): 95.1%
 - Greenhouse gases: 96.5%
 - Acidification (emissions to air): 82.4%
 - Volatile Organic Compounds (VOC): 89.6%
 - PAHs (emissions to the air): 78.0%
 - Particulate matter (PM, dust) emissions to the air: 72.3%

and contributes in the case of:

- Waste, non-hazardous /landfill: 45.1%
- Waste, hazardous / incinerated: 24.5%
- Persistent Organic Pollutants (POP): 41.5%
- Heavy metals emissions to the air: 15.8% 0
- End-of-life is predominant for the indicator Waste, hazardous / incinerated, • with 65.8%, due to the 8.5 kg of plastics which are incinerated.

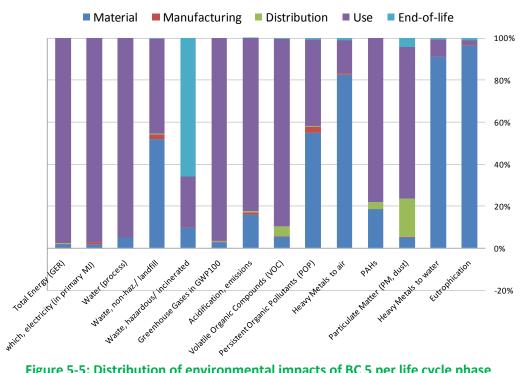


Figure 5-5: Distribution of environmental impacts of BC 5 per life cycle phase

5.2.2.3. CONCLUSIONS

For both combi-steamer Base-cases, the use phase is predominant for most indicators (12 out of 14 for the BC4, 8 out of 14 for BC5). Impacts on water occur at the material extraction phase. The same weight of incinerated waste is generated during end-of-life for BC4 and BC5, but this phase is more significant for BC5 as less waste is generated during its use phase.

Most of BC4's impacts are due to the electricity production. As BC5 generates heat directly from gas, less electricity is needed during the use phase. Therefore, BC5 have lower impacts for every indicators, except for VOC emissions (mainly due to the use phase) and Eutrophication (due to additional stainless steel in the gas combi-steamer).

36

5.2.3. COMMERCIAL APPLIANCES USED IN BAKERIES

5.2.3.1. BASE-CASE 6: COMMERCIAL IN-STORE CONVECTION OVEN

Table 5-29 shows the environmental impacts of a bakery in-store oven over its whole life cycle. The total primary energy consumption for the whole life cycle of Base-case 6 is 1062.9 GJ, of which 1051.2 GJ comes from the electricity consumption (equivalent to 100.1 MWh of final energy).

	Life Cycle phases>		PR	ODUCTI	ON	DISTRI-	USE	END-OF-LIFE*		TOTAL	
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste							debet	credit		•
8	Total Energy (GER)	MJ	2467	43	2511	607	1053876	153	3	149	1057143
	of which, electricity (in primary	MJ	1146	26	1172	1	1050012	0	0	0	1051185
9	MJ)	16	004	0	0.05		00000	0	0		00000
10	Water (process)	ltr	824	0	825	0	90008	0	0	0	90833
11	Water (cooling)	ltr	124	12	136	0	2800001	0	0	0	2800137
12	Waste, non-haz./ landfill	g	64833	154	64987	278	1218065	2674	0	2674	1286005
13	Waste, hazardous/ incinerated	g	530	0	530	6	24200	54	0	54	24790
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	182	2	184	37	46121	11	0	11	46353
15	Ozone Depletion, emissions	mg R-11 eq.				neglig	jible				
16	Acidification, emissions	g SO2 eq.	841	10	852	112	270681	22	0	22	271667
17	Volatile Organic Compounds (VOC)	g	14	0	14	10	458	1	0	1	483
18	Persistent Organic Pollutants (POP)	ng i-Teq	934	1	936	2	6892	18	0	18	7847
19	Heavy Metals	mg Ni eq.	644	3	647	14	18853	45	0	45	19559
	PAHs	mg Ni eq.	52	0	52	25	2901	0	0	0	2978
20	Particulate Matter (PM, dust)	g	116	2	118	1709	19888	199	0	199	21914
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	611	0	611	0	6776	13	0	13	7400
22	Eutrophication	g PO4	13	0	13	0	32	1	0	1	46
23	Persistent Organic Pollutants (POP)	ng i-Teq				neglig	jible				

Table 5-29: Life Cycle Impact (per unit) of Base-case 6

Figure 5-6 exposes the contribution of each life cycle phase to each environmental impact. It is clear that the use phase dominates all environmental impacts.

- **Material acquisition** contributes to eutrophication, with 28.3% (mainly due to stainless steel and electronic components)
- Manufacturing is not impacting any of the categories (less than 0.03%)
- Distribution has a negligible impact on all of the categories (less than 7.8%)
- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 99.7%
 - o Electricity: 99.9%
 - Water (process): 98.8%
 - Waste, non-hazardous /landfill: 94.7%

- Waste, hazardous / incinerated: 97.6%
- Greenhouse gases: 99.5%
- Acidification (emissions to air): 99.6%
- Volatile Organic Compounds (VOC): 95.6%
- Persistent Organic Pollutants (POP): 87.8%
- Heavy metals emissions to the air: 96.6%
- PAHs (emissions to the air): 98.2%
- Particulate matter (PM, dust) emissions to the air: 95.3%
- Heavy metals emissions to water: 91.6%
- Eutrophication: 70.1%
- End-of-life is not impacting any of the categories (less than 1.6%)

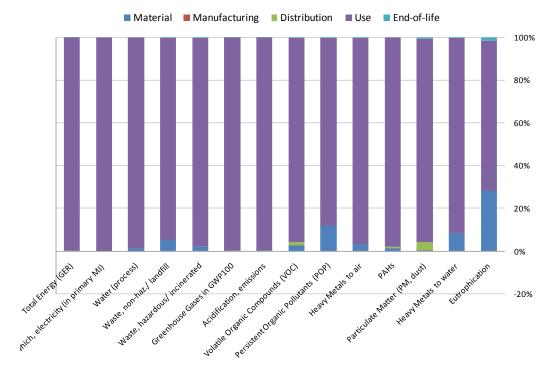


Figure 5-6: Distribution of environmental impacts of BC 6 per life cycle phase

5.2.3.2. BASE-CASE 7: ELECTRIC DECK OVEN

Table 5-30 shows the environmental impacts of an electric deck oven over its whole life cycle. The total primary energy consumption for the whole life cycle of Base-case 7 is 7.51 TJ, of which 7.44 TJ comes from the electricity consumption (equivalent to 708 MWh of final energy).

	Life Cycle phases>		PR	ODUCTI	ON	DISTRI-	USE	EN	D-OF-LIFE	*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	44213	14156	58369	16600	7435367	1806	1802	4	7510341
9	of which, electricity (in primary MJ)	MJ	5915	8230	14146	42	7430109	0	3	-3	7444295
10	Water (process)	ltr	25682	114	25796	0	663589	0	2	-2	689384
11	Water (cooling)	ltr	6402	3588	9990	0	19813348	0	15	-15	19823323
12	Waste, non-haz./ landfill	g	1551142	62473	1613615	6812	8630764	14768	11	14757	10265948
13	Waste, hazardous/ incinerated	g	329	8	336	135	171212	14535	2	14533	186217
	Emissions (Air) Greenhouse Gases in	kg CO2	3960	803	4762	977	324659	135	132	2	330401
14 15	GWP100 Ozone Depletion, emissions	eq. mg R- 11 eq.		l		negli	gible				
16	Acidification, emissions	g SO2 eq.	26712	3478	30190	2992	1913891	267	167	100	1947174
17	Volatile Organic Compounds (VOC)	g	141	12	153	308	2878	6	2	3	3342
18	Persistent Organic Pollutants (POP)	ng i- Teq	18087	1368	19455	39	48895	102	0	102	68490
19	Heavy Metals	mg Ni eq.	51975	3203	55178	345	129062	504	0	504	185090
	PAHs	mg Ni eq.	254	1	255	658	15680	0	0	0	16593
20	Particulate Matter (PM, dust)	g	4314	532	4846	50930	58553	2326	3	2323	116651
	Emissions (Water)	1	0.1500								
21	Heavy Metals	mg Hg/20	31509	2	31511	11	48221	151	0	151	79894
22	Eutrophication	g PO4	882	5	887	0	237	9	0	9	1133
23	Persistent Organic Pollutants (POP)	ng i- Teq	negligible								

Table 5-30: Life cycle impact (per unit) of Base-case 7

Figure 5-7 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:

- **Material acquisition** is predominant in the total environmental impact for Eutrophication, with 77.8% of the total impact (mainly due to the stainless steel), and contributes to:
 - Waste, non-hazardous /landfill: 15.1%
 - Persistent Organic Pollutants (POP): 26.4% (mainly due to galvanised steel)
 - Heavy metals emissions to the air: 28.1% (mainly due to the stainless steel)
 - Heavy metals emissions to water: 39.4% (mainly due to the stainless steel)
- Manufacturing is not impacting any of the categories (less than 2.0%)

- **Distribution** contributes to Particulate matter (PM, dust) emissions to the air, with 43.7%.
- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 99.0%
 - Electricity: 99.8%
 - Water (process): 96.3%
 - Waste, non-hazardous /landfill: 84.1%
 - Waste, hazardous / incinerated: 91.9%
 - Greenhouse gases: 98.3%
 - Acidification (emissions to air): 98.3%
 - Volatile Organic Compounds (VOC): 86.0%
 - Persistent Organic Pollutants (POP): 71.4%
 - Heavy metals emissions to the air: 69.7%
 - PAHs (emissions to the air): 94.4%
 - Particulate matter (PM, dust) emissions to the air: 50.2%
 - Heavy metals emissions to water: 60.4%

and contributes in the case of:

- Heavy metals emissions to water: 21.0%
- **End-of-life**: 7.8% of hazardous or incinerated wastes are produced during the end-of-life, the other impacts of this phase are negligible.

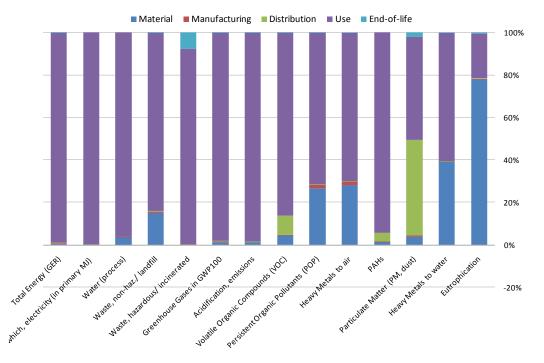


Figure 5-7: Distribution of environmental impacts of BC 7 per life cycle phase

5.2.3.3. BASE-CASE 8: GAS DECK OVEN

Table 5-31 shows the environmental impacts of a gas deck oven over its whole life cycle. The total primary energy consumption for the whole life cycle of Base-case 8 is 3,855 GJ, of which 252 GJ comes from the electricity consumption (equivalent to 24 MWh of final energy).

	Life Cycle phases>		PRODUCTION			DISTRI-	USE	ENI	D-OF-LIF	E *	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	53865	11899	65764	16600	3773567	2165	1731	434	3856365
9	of which, electricity (in primary MJ)	MJ	8913	6882	15794	42	236030	0	2	-2	251864
10	Water (process)	ltr	29818	94	29913	0	184024	0	2	-2	213935
11	Water (cooling)	ltr	7644	2963	10607	0	629098	0	13	-13	639692
12	Waste, non-haz./ landfill	g	1750757	54742	1805499	6812	291537	23853	9	23844	2127692
13	Waste, hazardous/ incinerated	g	205	7	212	135	5437	12350	1	12349	18134
14	Emissions (Air) Greenhouse Gases in GWP100	kg CO2 eq. mg R-	4921	677	5598	977 neglig	206036 gible	161	127	34	212646
15 16	Ozone Depletion, emissions Acidification, emissions	11 eq. g SO2 eq.	30231	2935	33166	2992	118388	319	161	159	154704
17	Volatile Organic Compounds (VOC)	g	248	11	259	308	2760	7	2	5	3332
18	Persistent Organic Pollutants (POP)	ng i- Teq	22514	1318	23832	39	1784	164	0	164	25819
19	Heavy Metals	mg Ni eq.	60775	3087	63862	345	5985	612	0	612	70805
	PAHs	mg Ni eq.	153	1	154	658	1865	0	0	0	2677
20	Particulate Matter (PM, dust)	g	11538	448	11986	50930	24455	2797	3	2794	90165

Table 5-31: Life cycle impact (per unit) of Base-case 8

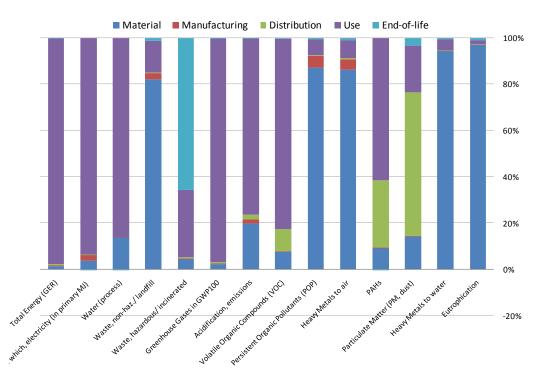
Emissions (Water)

21	Heavy Metals	mg Hg/20	35907	2	35909	11	1880	181	0	181	37980
22	Eutrophication	g PO4	998	4	1002	0	17	10	0	10	1030
23	Persistent Organic Pollutants (POP)	ng i- Teq				negli	gible				

Figure 5-8 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:

- Material acquisition is predominant in the total environmental impact for the following categories :
 - Waste, non-hazardous /landfill: 82.3%
 - Persistent Organic Pollutants (POP): 87.2% (mainly due to steel)
 - Heavy metals emissions to the air: 85.8% (mainly due to stainless steel)
 - Heavy metals emissions to water: 94.5% (mainly due to stainless steel)
 - Eutrophication: 96.9% (mainly due to stainless steel)

and contributes for the categories:


- Acidification (emissions to air): 19.5%
- Manufacturing is not impacting any of the categories (less than 5.1%)

- **Distribution** is dominant for Particulate matter (PM, dust) emissions to the air, with 56.5%, and contributes to PAHs emissions to air, with 24.6%.
- **The use phase** impacts are dominating the total environmental impacts in the case of :
 - o Total Energy (GER): 97.9%
 - Electricity: 93.7%
 - Water (process): 86.0%
 - Greenhouse gases: 96.9%
 - Acidification (emissions to air): 76.5%
 - Volatile Organic Compounds (VOC): 82.8%
 - PAHs (emissions to the air): 69.7%

and contributes in the case of:

- Waste, hazardous / incinerated: 30.0%
- Particulate matter (PM, dust) emissions to the air: 27.1%
- End-of-life is predominant for the indicator Waste, hazardous / incinerated, with 68.1%, due to the 12.35 kg of plastics which are incinerated.

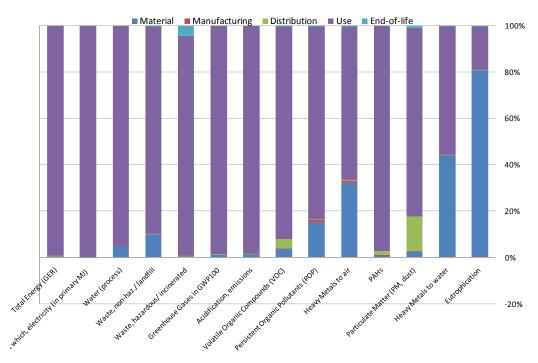
5.2.3.4. BASE-CASE **9:** ELECTRIC RACK OVEN

Table 5-32 shows the environmental impacts of an electric rack oven over its whole life cycle. The total primary energy consumption for the whole life cycle of Base-case 9 is 7.54 TJ, of which 7.47 TJ comes from the electricity consumption (equivalent to 718 MWh).

	Life Cycle phases>		PRODUCTION DISTRI- USE EN			EN	D-OF-LIFE	*	TOTAL		
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	37473	7772	45245	7826	7471971	1010	1803	-793	7524249
9	of which, electricity (in primary MJ)	MJ	7560	4518	12079	20	7465621	0	1	-1	7477718
10	Water (process)	ltr	33976	63	34039	0	633040	0	1	-1	667079
11	Water (cooling)	ltr	5298	1970	7268	0	19908073	0	8	-8	19915333
12	Waste, non-haz./ landfill	g	942126	34299	976425	3227	8665589	8754	6	8748	9653990
13	Waste, hazardous/ incinerated	g	1395	4	1399	64	172041	7724	1	7723	181227
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	3460	441	3900	461	326294	75	133	-58	330598
15	Ozone Depletion, emissions	mg R- 11 eq.				neglię	gible				
16	Acidification, emissions	g SO2 eq.	28735	1910	30645	1412	1923138	149	168	-18	1955177
17	Volatile Organic Compounds (VOC)	g	122	7	129	145	2910	3	2	1	3185
18	Persistent Organic Pollutants (POP)	ng i- Teq	8830	751	9581	18	49029	60	0	60	58689
19	Heavy Metals	mg Ni eq.	65061	1759	66820	164	130048	282	0	282	197314
	PAHs	mg Ni eq.	222	1	223	311	16009	0	0	0	16542
20	Particulate Matter (PM, dust)	g	3955	292	4247	23927	63153	1302	3	1299	92626
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	38883	1	38884	5	48524	84	0	84	87498
22	Eutrophication	g PO4	1041	3	1043	0	240	5	0	5	1288
23	Persistent Organic Pollutants (POP)	ng i- Teq		negligible							

Table 5-32: Life cycle impact (per unit) of Base-case 9

Figure 5-9 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:


- **Material acquisition** is predominant in the total environmental impact for Eutrophication, with 80.8% of the total impact (mainly due to the stainless steel), and contributes to:
 - Waste, non-hazardous /landfill: 9.8%
 - Persistent Organic Pollutants (POP): 15.0% (mainly due to galvanised steel)
 - Heavy metals emissions to the air: 33.0% (mainly due to the stainless steel)
 - Heavy metals emissions to water: 44.4% (mainly due to the stainless steel)
- Manufacturing is not impacting any of the categories (less than 1.3%)
- **Distribution** contributes to Particulate matter (PM, dust) emissions to the air, with 25.8%.
- **The use phase** impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 99.3%

- Electricity: 99.8%
- Water (process): 94.9%
- Waste, non-hazardous /landfill: 89.8%
- Waste, hazardous / incinerated: 94.9%
- Greenhouse gases: 98.7%
- Acidification (emissions to air): 98.4%
- Volatile Organic Compounds (VOC): 91.4%
- o Persistent Organic Pollutants (POP): 83.5%
- \circ $\;$ Heavy metals emissions to the air: 65.9% $\;$
- PAHs (emissions to the air): 96.8%
- o Particulate matter (PM, dust) emissions to the air: 68.2%
- Heavy metals emissions to water: 55.5%

and contributes in the case of:

- Eutrophication: 18.6%
- **End-of-life**: 4.3% of hazardous or incinerated wastes are produced during the end-of-life, the other impacts of this phase are even lower.

5.2.3.5. BASE-CASE 10: GAS RACK OVEN

Table 5-31 shows the environmental impacts of a gas deck oven over its whole life cycle. The total primary energy consumption for the whole life cycle of Base-case 10 is 3,701 GJ, of which 633 GJ comes from the electricity consumption (equivalent to 60 MWh of final energy).

	Life Cycle phases>		PR	ODUCTI	ON	DISTRI-	USE	END	D-OF-LIFE	*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	37957	7797	45754	7826	3631817	1022	1805	-783	3684614
9	of which, electricity (in primary MJ)	MJ	7680	4533	12213	20	620672	0	1	-1	632904
10	Water (process)	ltr	34090	63	34153	0	176712	0	1	-1	210864
11	Water (cooling)	ltr	5311	1976	7287	0	1654873	0	8	-8	1662152
12	Waste, non-haz./ landfill	g	962042	34413	996455	3227	729458	8964	6	8958	1738099
13	Waste, hazardous/ incinerated	g	1395	4	1399	64	14313	7724	1	7723	23500
14	Greenhouse Gases in GWP100	kg CO2 eq.	3501	442	3943	461	193739	76	134	-57	198086
1/		-	3501	442	3943	461	193739	76	134	-57	198086
15	Ozone Depletion, emissions	mg R- 11 eq. g SO2	28902	1916	30818	negliç 1412	209020	151	168	-17	241233
16	Acidification, emissions	eq.	20902	1910	30010	1412	209020	151	100	-17	241233
										1	Į.
17	Volatile Organic Compounds (VOC)	g	125	7	132	145	2539	3	2	1	2816
17 18			125 9118	7 753	132 9871	145 18	2539 4166	3 62	2	1 62	
	(VOC) Persistent Organic Pollutants	g ng i-	9118 65343		-	18 164					14118 80435
18	(VOC) Persistent Organic Pollutants (POP)	g ng i- Teq mg Ni	9118	753	9871	18	4166	62	0	62	2816 14118 80435 3403

Table 5-33: Life cycle impact (per unit) of Base-case 10

Emissions (Water)

2	Heavy Metals	mg Hg/20	39049	1	39050	5	4392	85	0	85	43532
2	2 Eutrophication	g PO4	1045	3	1048	0	30	5	0	5	1082
2	Persistent Organic Pollutants (POP)	ng i- Teq				negli	gible				

Figure 5-10 exposes the contribution of each life cycle phase to each environmental impact. Several observations can be made from this analysis:

- Material acquisition is predominant in the total environmental impact for the following categories :
 - Waste, non-hazardous /landfill: 55.4%
 - Persistent Organic Pollutants (POP): 64.6% (mainly due to steel)
 - Heavy metals emissions to the air: 81.2% (mainly due to stainless steel)
 - Heavy metals emissions to water: 89.7% (mainly due to stainless steel) 0
 - Eutrophication: 96.6% (mainly due to stainless steel) 0
 - and contributes for the categories:
 - Water (process): 16.2% (mainly due to stainless steel) 0
- Manufacturing is not impacting any of the categories (less than 5.3%)
- Distribution is contributes to Particulate matter (PM, dust) emissions to the air, with 39.7%
- The use phase impacts are dominating the total environmental impacts in the case of :
 - Total Energy (GER): 98.6% 0
 - Electricity: 98.1% 0
 - Water (process): 83.8% 0

- Waste, hazardous / incinerated: 60.9%
- Greenhouse gases: 97.8%
- Acidification (emissions to air): 86.6%
- Volatile Organic Compounds (VOC): 90.2%
- PAHs (emissions to the air): 84.3%
- Particulate matter (PM, dust) emissions to the air: 51.0%

and contributes in the case of:

- Waste, non-hazardous /landfill: 42.0%
- Persistent Organic Pollutants (POP): 29.5%
- Heavy metals emissions to the air: 16.0%
- End-of-life contributes to 32.9% of the impact for the indicator Waste, hazardous / incinerated, due to the 7 kg of plastics which are incinerated.

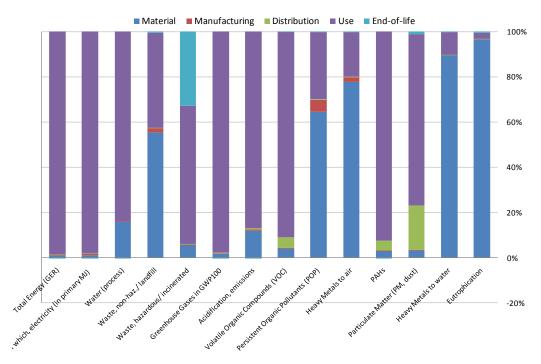


Figure 5-10: Distribution of environmental impacts of BC 10 per life cycle phase

5.2.3.6. CONCLUSIONS

The environmental impacts of bakery ovens are different depending on their type. For in-store convection ovens, the use phase is predominant for every impact. They are indeed consuming a significant amount of electricity, which makes the impacts of all other phases almost negligible. While electric and gas versions of deck and rack ovens are used for the same purpose, their impacts differs in many ways. This is also due to the fact that most impacts occur during the use phase: gas and electricity consumption bring about different impacts. Nevertheless, gas ovens consume almost half of the energy consumed by the electric version.

5.3. BASE-CASE LIFE CYCLE COSTS

The result of the procurement process should be the cheapest ovens, having the lowest total cost of ownership, i.e. taking into account the whole life cycle of the product.

5.3.1. **Domestic appliances**

The Life Cycle Cost (LCC) of the three domestic Base-cases is presented in Table 5-34. This was automatically calculated by EcoReport using the product price, the energy consumption and the price of energy, and the discount rate.

Cases										
	Base-case 1: Domestic electric oven		Base-case Domestic oven		Base-case 3: Domestic microwave oven					
Product price	500€	58%	335€	70%	117€	55%				
Gas	0€	0%	142€	30%	0€	0%				
Electricity	358€	42%	0€	0%	96€	45%				
Total	858 €		477€		213 €					

Table 5-34: EcoReport outcomes of the LCC calculations for the three domestic Base-

There are similarities between BC1 and BC3 concerning the life cycle cost. The product price represents indeed around 55% of the LCC for these two Base-cases. This is not the case for BC2, where the product price is 70% of the life cycle cost. From a consumer point of view, an increase in energy efficiency will be less visible for BC2, as the LCC will be reduced in a smaller proportion.

5.3.2. COMMERCIAL APPLIANCES USED IN RESTAURANTS

The same indicators for the two combi-steamer Base-cases are presented in Table 5-32.

Table 5-35: EcoReport outcomes of the LCC calculations for the two commercial Base-cases

	Base-case Commercial el combi-stear	ectric	Base-case Commercia combi-stea	al gas
Product price	11,900€	48%	13,200€	62%
Installation/ acquisition costs	200€	1%	300€	1%
Gas	0€	0%	5,130€	24%
Electricity	11,680€	47%	1,652€	8%
Water	401€	2%	401€	2%
Repair & maintenance costs	568€	2%	730€	3%
Total	24,748€		21,412 €	

The two biggest costs are purchase and energy. While gas combi-steamers are more expensive to buy, over their lifetime of 10 years, they appear to be cheaper than their electric equivalent.

5.3.1. COMMERCIAL APPLIANCES USED IN BAKERIES

Table 5-36 presents the life cycle costs of the three bakery Base-cases, detailing the different cost items.

	for the bakery base cases								
	Base-case 6: In-store convection oven		Base-case Electric decl		Base-case 8: Gas deck oven				
Product price	10,000€	39%	35,000€	29%	35,000€	44%			
Installation/ acquisition costs	400€	2%	0€	0%	0€	0%			
Gas	0€	0%	0€	0%	36,327€	45%			
Electricity	13,078€	51%	81,508€	67%	2,588€	3%			
Water			329€	0%	329€	0%			
Repair & maintenance costs	2,104€	8%	4,447€	4%	5,930€	7%			
Total	25,582€		121,284 €		80,173 €				

Table 5-36: EcoReport outcomes of the LCC calculations for the bakery Base-cases

	Base-case Commerci electric rack	al	Base-case Commerci rack ov	al gas	
Product price	15,000€	14%	15,000€	24%	
Installation/ acquisition costs	1,800€	2%	2,000€	3%	
Gas	0€	0%	33,814€	54%	
Electricity	89,617€	82%	7,449€	12%	
Water	289€	0%	289€	0%	
Repair & maintenance costs	2,960€	3%	4,441€	7%	
Total	109,666€		62,993€		

There are few similarities between the five Base-cases. The gas ovens are much cheaper to run that their electric equivalent. Energy represents about 50% of the cost of a gas oven, while it represents 67% of oven life cycle cost for the electric deck and 82% for the electric rack oven.

5.4. EU TOTALS

This section provides the environmental assessment of the Base-cases at the EU-27 level using stock and market data from Task 2. As the Base-cases defined for the Lot 22 study were representative of average products in stock, the Overall Improvement ratio was defined to the value 1.

5.4.1. **Domestic appliances**

5.4.1.1. LIFE CYCLE ENVIRONMENTAL IMPACTS

Table 5-37 shows the total environmental impacts of all domestic products in operation in EU-27 in 2008, based on the extrapolation of the Base-cases impacts (all ovens have the same impacts as the Base-case of their category). These figures come from the EcoReport tool by multiplying the individual environmental impacts of a Base-case with the stock of this Base-case in 2008.

Environmental Impact	Base- case 1	Base- case 2	Base- case 3	Total domestic
Total Energy (GER) (in PJ)	266	41	136	442
of which electricity (in PJ)	24.1	0.1	11.3	35.5
Water process (in million m ³)	18.9	0.5	12.0	31.4
Waste,non- hazardous/landfill (in kt)	638	133	923	1694
Waste, hazardous/ incinerated (in kt)	6.7	0.1	7.5	14.2
	Emissio	ons to air		
Greenhouse Gases in GWP100 (in Mt CO ₂ eq.)	12	2	6	21
Acidification, emissions (in kt SO ₂ eq.)	69	2	42	113
Volatile Organic Compounds (VOC) (in kt)	0.19	0.06	0.14	0.39
Persistent Organic Pollutants (POP) (in g i-Teq.)	6	2	4	12
Heavy Metals emissions to the air (in ton Ni eq.)	7	1	6	14
PAHs (in ton Ni eq.)	0.9	0.3	1.6	2.7


Table 5-37: Environmental impacts of the EU-27 stock in 2008 for all Base-cases

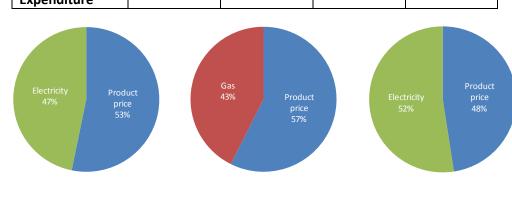
European Commission (DG ENER)

Environmental Impact	Base- case 1	Base- case 2	Base- case 3	Total domestic				
Particulate Matter (PM, dust) (in kt)	13	13 4 9		26				
	Emissions to water							
Heavy Metals emissions to water (in ton Hg/20)	3.8	0.3	3.6	7.7				
Eutrophication (in kt PO ₄)	0.07	0.01	0.09	0.17				

Summary of environmental impacts of Base-cases as a percentage of total impact are presented in Figure 5-11.

BC1 - Domestic electric oven BC2 - Domestic gas oven BC3 - Domestic microwave oven

Figure 5-11: Base-cases' share of the environmental impacts of the 2008 domestic stock


Domestic electric ovens contribute to the biggest share in most of the indicators calculated by EcoReport. This is easily explained by the fact that this type of appliances has the biggest stock of products.

5.4.1.2. LIFE CYCLE COSTS

Regarding the total consumer expenditure in 2008 related to domestic electric and gas ovens, about 40% of the total costs are due to energy consumption. This percentage is higher for microwave ovens (68%). The distribution per Base-case is given in Figure 5-12 and details on consumer expenditure are presented in Table 5-38. Electricity and gas were grouped together under the category "energy".

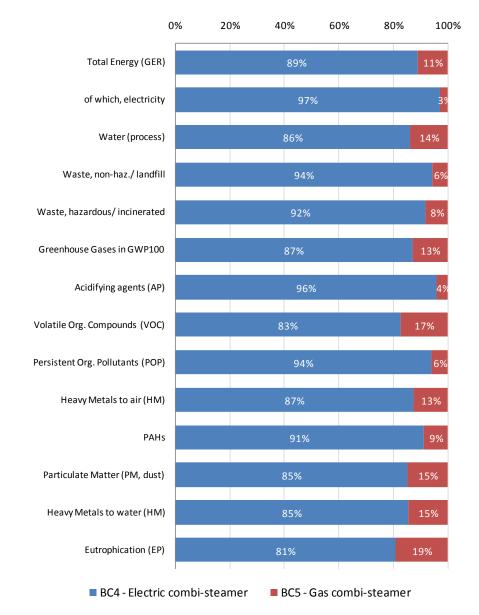
Table 5-38: Total Annual Consumer expenditure in EU-27 in 2007 for domestic Base-cases

	Base-case 1: Domestic electric oven	Domestic electricBase-case 2: Domestic gas ovenDomestic microwave		Total domestic	
EU-27 stocks (in mln units)	145	50	125	320	
Share of the EU-27 sales	45%	16% 39%			
Product Price (in mln €)	ce 4,495 730		1,623	6,848	
Energy (in mln €)	3,950	541	1,790	6,281	
Total (in mln €)	8,445	1,272	3,413	14,314	
Share of the Total Annual Consumer Expenditure	64%	10%	26%		

Product price Gas Electricity

5.4.2. COMMERCIAL APPLIANCES USED IN RESTAURANT

5.4.2.1. LIFE CYCLE ENVIRONMENTAL IMPACTS

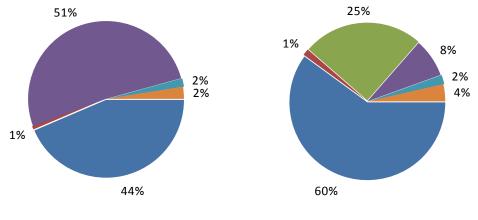

Table 5-39 shows the total environmental impacts of all commercial ovens used in restaurants in operation in EU-27 in 2007, based on the extrapolation of the Base-cases impacts (all ovens have the same impacts as the Base-case of their category). These figures come from the EcoReport tool by multiplying the individual environmental impacts of a Base-case with the stock of this Base-case in 2007.

for restaurant Base-cases								
Environmental Impact	Base-case 4	Base-case 5	Total Commercial					
Total Energy (GER) (in PJ)	39.6	4.9	44.5					
of which electricity (in TWh)	3.7	0.1	3.8					
Water process (in million m ³)	10.5	1.7	12.1					
Waste,non- hazardous/landfill (in kt)	52.4	3.1	55.5					
Waste, hazardous/ incinerated (in kt)	1.3	0.1	1.4					
	Emissions to	air						
Greenhouse Gases in GWP100 (in Mt CO ₂ eq.)	1.8	0.3	2.0					
Acidification, emissions (in kt SO ₂ eq.)	10.4	0.4	10.8					
Volatile Organic Compounds (VOC) (in kt)	0.019	0.004	0.023					
Persistent Organic Pollutants (POP) (in g i-Teq.)	0.30	0.02	0.32					
Heavy Metals to air (in ton Ni eq.)	1.3	0.2	1.5					
PAHs (in ton Ni eq.)	0.12	0.01	0.13					
Particulate Matter (PM, dust) (in kt)	1.0	0.2	1.2					
Emissions to water								
Heavy Metals to water (in ton Hg/20)	0.7	0.1	0.8					
Eutrophication (in kt PO ₄)	0.012	0.003	0.015					

Table 5-39: Environmental impacts of the EU-27 stock in 2007 for restaurant Base-cases

Summary of environmental impacts of Base-cases as a percentage of total impact are presented in Figure 5-13.

Figure 5-13: Base-cases' share of the environmental impacts of the 2007 stock of combi-steamers


5.4.2.2. LIFE CYCLE COSTS

Regarding the total consumer expenditure in 2007, the distribution per Base-case is given in Figure 5-12 and details are presented in Table 5-40.

	Base-case 4 Commercial electric combi- steamer	Base-case 5 Commercial gas combi-steamer	Total Restaurant
EU-27 stock (2007) (in units)	400,000	80,000	480,000
Share of the EU-27 stock	83.3%	16.7%	
Product Price (in mln €)	488	121	609
Installation (in mln €)	8	3	11
Gas (in mln €)	0	51	51
Electricity (in mln €)	576	16	592
Water (in mln €)	20	4	24
Maintenance (in mln €)	28	7	35
Total (in mln €)	1,120	202	1,322
Share of the Total Annual Consumer Expenditure	84.7%	15.3%	

Table 5-40: Total Annual Consumer expenditure in EU-27 in 2007 for combi-steamers

Product price Installation Gas Electricity Water Maintenance

Figure 5-14: Share of the total annual consumer expenditure in EU-27 for Base-case 4 (left) and Base-case 5 (right)

5.4.3. COMMERCIAL APPLIANCES USED IN BAKERIES

This section presents the impacts of bakery ovens at the EU level. The environmental impacts and the consumer expenditure are presented aggregated, taking into account the stock. The year of reference for bakery ovens is 2006, as the market figures were available only for this year.

5.4.3.1. LIFE CYCLE ENVIRONMENTAL IMPACTS

Table 5-41 presents the environmental impacts of bakery ovens at the EU level, for 2006.

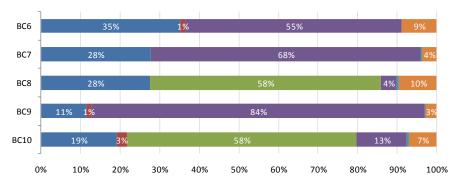
Indicator	BC6	BC7	BC8	BC9	BC10	Total bakery
Total Energy (GER) (in PJ)	11.2	26.6	11.0	22.6	18.1	89.4
of which electricity (in TWh)	1.1	2.5	0.1	2.1	0.3	6.1
Water process (in million m ³)	1.0	2.5	0.6	2.0	1.0	7.0
Waste,non- hazardous/landfill (in kt)	13.7	37.9	4.3	29.0	8.1	92.9
Waste, hazardous/ incinerated (in kt)	0.26	0.67	0.04	0.54	0.11	1.63
Emissions (Air)						
Greenhouse Gases in GWP100 (in Mt CO ₂ eq.)	0.5	1.2	0.6	1.0	1.0	4.2
Acidification, emissions (in kt SO ₂ eq.)	2.9	6.9	0.4	5.9	1.2	17.2
Volatile Organic Compounds (VOC) (in kt)	0.005	0.012	0.009	0.010	0.014	0.050
Persistent Organic Pollutants (POP) (in g i-Teq.)	0.08	0.26	0.05	0.18	0.07	0.64
Heavy Metals to air (in ton Ni eq.)	0.21	0.71	0.14	0.59	0.37	2.02
PAHs (in ton Ni eq.)	0.03	0.06	0.01	0.05	0.02	0.16
Particulate Matter (PM, dust) (in kt)	0.2	0.5	0.2	0.3	0.3	1.5
Emissions (Water)						
Heavy Metals to water (in ton Hg/20)	0.1	0.3	0.1	0.3	0.2	0.9
Eutrophication (in kt PO ₄)	0.000	0.005	0.002	0.004	0.005	0.016

Table 5-41: Total Annual Consumer expenditure in EU-27 in 2006 for bakery ovens

Total Energy (GER)	13%	30%		12%		25%		20	%
Electricity	18%		41%		1%	,)	35%		5%
Water (process)	14%	÷	35%		8%		28%		15%
Waste, non-haz./landfill	15%		41%		5%		31%		9%
Waste, hazardous/incinerated	16%		41%		3%		33%		7%
Greenhouse Gases in GWP100	12%	28%		14%		23%		23%	
Acidifying agents (AP)	17%		40%		2%		34%		7%
Volatile Org. Compounds (VOC)	10%	25%		18%		19%		28%	
Persistent Org. Pollutants (POP)	13%		41%		8%		28%		10%
Heavy Metals to air (HM)	10%	35%		7%		29%		1	8%
PAHs	19%		36%		4%		30%		10%
Particulate Matter (PM, dust)	16%		32%		13%	1	19%	19)%
Heavy Metals to water (HM)	8%	34%		8%		28%		219	6
Eutrophication (EP)	3%	30%	129	6	24%			30%	
(0% 10%	20% 30)% 40'	% 50	% 60	% 70	0% 80	0% 90	% 10

BC6 - Bakery in-store oven BC7 - Electric deck oven BC8 - Gas deck oven BC9 - Electric rack oven BC10 - Gas rack oven

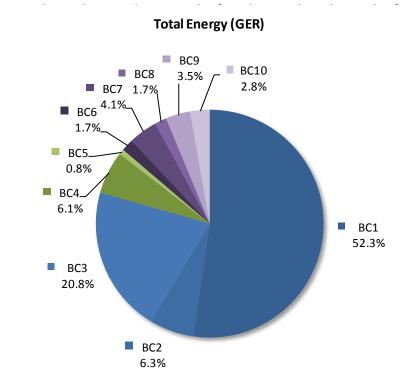
Figure 5-15: Base-cases' share of the environmental impacts of the 2006 stock of bakery ovens


Figure 5-15 presents the share of each Base-case for the 14 indicators measured by EcoReport. The electric deck oven is clearly the one with the biggest impact (from 21% of PM emissions to 41% of Eutrophication).

5.4.3.2. LIFE CYCLE COSTS

Table 5-42: Total Annual Consumer expenditure in EU-27 in 2006

	BC6	BC7	BC8	BC9	BC10	Total bakery
EU-27 stock (2007) (in units)	85,000	53,000	43,000	30,000	45,000	256,000
Share of the EU-27 stock	33%	21%	17%	12%	18%	
Product Price (in mln €)	106	158	67	45	68	443
Installation (in mln €)	4	0	0	5	9	19
Gas (in mln €)	0	0	140	0	204	345
Electricity (in mln €)	165	389	10	331	45	940
Water (in mln €)	0	2	1	1	2	6
Maintenance (in mln €)	27	21	23	11	25	106
Total (in mln €)	302	569	241	394	352	1,858
Share of the Total Annual Consumer Expenditure	16.3%	30.6%	13.0%	21.2%	19.0%	


ovens

5.4.4. IMPACTS OF DOMESTIC AND COMMERCIAL APPLIANCES AT THE EU LEVEL

As ovens used in households, in restaurants and in bakery are designed for different market, and do not compete with each other, they were assessed separately. However, it is interesting to compare the energy consumed at the EU level by all oven types.

Figure 5-17 presents the share of each Base-case in the total primary energy consumed. More than half of this consumption is due to the domestic electric oven. The commercial sector represents only 18% of the total consumption. Oven powered with gas (Base-cases 2, 5, 8 and 10) have a much smaller share in the energy

It can seem surprising that more energy is consumed by the bakery ovens than by restaurant ovens. However, this represents only the energy consumption of combisteamers. Other types of cooking appliances are used in restaurants. Hobs, grills and fry-tops are covered by the ENER Lot 23 study. Other type of appliances such as boiling kettles and fryers are also used to cook a significant amount of food. Altogether, the energy consumed for cooking in restaurants should be higher than the energy used in bakeries.

5.5. EU-27 TOTAL SYSTEM IMPACT

When operating, ovens produce heat which is partially transferred to the room where it is located. The environmental impacts of this heat transfer can be positive as well as negative, depending on several parameters:

- The climate: If the room needs to be heated, the oven will complement the heating system. On the contrary, if the room needs to be cooled, operating an oven will require additional cooling.
- The energy source of the oven and of the heating system: electricity needs to be produced from a primary energy, generally with low efficiency. If both appliances are using the same energy source, there will be no noticeable difference in the energy efficiency. However, if they use different energy efficiency, the global efficiency of heating will be modified.

According to the MTP study⁹ on the "heat replacement effect" (the contribution to heating made by lighting and appliances in heated living space), only 18% of the heat produced by an oven throughout a year is actually heating the building. Moreover, this figure is valid only for UK, where it is estimated that building heating is required during 41% of the year. In Member States where this percentage is lower, the heat replacement ratio is even lower.

Due to huge differences between Member States and appliances, no global heat transfer can be estimated at EU level with reliability.

5.6. CONCLUSIONS

The environmental impact assessments carried out with the EcoReport tool shows that there are some common observations to all domestic Base-cases: the use phase is by far the most impacting stage of the life cycle in terms of energy consumption and greenhouse gases emissions. The production phase has a significant contribution to the following impacts: generation of non-hazardous waste, heavy metals emissions to air and water and eutrophication. Finally, the end-of-life phase is not dominating any category. However, electricity generation is contributing to an important part of the global environmental impacts of the electric appliances, and so the impacts of the gas oven are different.

The analysis of the improvement potential in Task 7 will focus on technologies that reduce the energy consumption, and also on alternative material reducing environmental impacts. Task 6 will examine the improvement options of ovens considered as best available technologies, in an attempt to improve upon the Base-cases.

⁹ MTP report BNXS05 version 9.0 updated 15th March 2010.